BASIC XE

s N\

N

PR

A REFERENCE MANUAL FOR

BASIC XE

This manual is Copyright (®) 1985 by
Optimized Systems Software, Inc.

Portions of this manual are
Copyright (€) 1980 by Atari, Inc.
and are reprinted with the
permission of Atari, Inc.

All rights reserved. Reproduction or translation of
any part of this manual beyond that expressly
permitted by 8107 or §108 of the United States
Copyright Act is unlawful without the permission of
the copyright owner.

™

Optimized Systems Software, Inc.
1221B Kentwood Avenue San Jose, California 95129 (408) 446-3099

Page ii BASIC XE Reference Manual

Acknowledgements

Trademarks

Acknowledgements

0SS gratefully thanks Atari, Inc., for its kind
permission to reprint portions of the Atari BASIC
Reference Manual. Please be aware that these
portions have been copyrighted (¥ by Atari, Inc., and
respect the rights implied thereby.

We also thank those stalwart 0SS users whose requests
and pleas for an extended BASIC inspired us to create
BASIC XFE, and those beta-testers who helped us make
sure that BASIC XE works the way we want it to.

Trademarks

DOS XL, BASIC XL, BASIC XE, 0SS, and Supercartridge
are trademarks of Optimized Systems Software, Inc.

Atarl is a registered trademark of Atari, Inc.
800 XL, 65 XE, 130 XE, 810 Disk Drive, 1050 Disk Drive,

410 Program Recorder, 1010 Program Recorder,
and 850 Interface Module are trademarks of Atari, Inc.

BASIC XE Reference Manual

Page iii

Page iv BASIC XE Reference Manual

Preface
Caveat

Preface

You may wonder why BASIC XE needs a reference manual at all. It's just another
BASIC, right? Well...yes and no. BASIC XE is another BASIC, but it's a cut above
the other BASICs currently available for Atari XL and XE series computers. It
needs its own reference manual so that you can find out just how to take
advantage of all the extras included in BASIC XE.

What's In This Manual?

This manual does not pretend to teach you how to program in BASIC, There are
several very good tutorials that cover the rudiments of BASIC programming on the
Atari, and we direct you to them if BASIC is completely foreign to you.

That doesn't mean that this manual is useless. If you want to exploit BASIC XE's
advantages, it's a necessity. Between these covers you will find a complete
description of the BASIC XE language, including the special statements unique to
BASIC XE as well as those in standard BASIC. We have avoided computer jargon
whenever possible, resorting to it only when absolutely necessary. To decrease
bewilderment we define jargon terms when they are first used, and provide a
glossary of all the jargon used in the manual.

As you will notice when you look at the table of contents, this manual groups
commands that perform related tasks into chapters, rather than simply listing them
in alphabetical order. This enables you to find all the commands that could help
you with a specific task. We have included an alphabetized index at the end of the
book so that you can find single topics and commands quickly.

Where To Go From Here

If you are planning to read this manual cover to cover before you even boot
BASIC XE, that's fantastic! If not, may we suggest that you at least read the
introduction and scan the table of contents. This will give you a brief overview of
BASIC XE and an idea of where to find things in the reference manual.

Caveat

Because we're only human and so sometimes make mistakes, a caveat is required.
We have made every effort to ensure that this manual accurately describes the
BASIC XE system and language. However, due to the ongoing improvement and
updating of all 0SS products (including BASIC XE), we cannot guarantee the
absolute accuracy of the documentation. Therefore, 0SS, Inc., disclaims all
liability for changes, errors, or omissions in either the manual or the software
itself.

BASIC XE Reference Manual Page v

Page vi BASIC XE Reference Manual

Table of Contents

Introduction
Extras that BASIC XE Offers YOW.. s eee s sids siss s siois s aos 6 siors s e ¢ sais & o)
How: ito: Boot BASIC XBiew s s oo aaie s biie o wieie o 51t ¢ 475 & aein ¢ 56 s6004 5 ¥ ceee?
How to Use this Manual......ceiiieeeeorecnevosncoossoscsesascnsssaned
Special Notations this Manual USeS...eeerveessssesososssscssssenssssead
BASIC XE's Operating ModeS..uueeeesoeesscsssassosasascesssannaanceasd
BASIC XE Keywords and SymbolS....ceeveevovessscanoes e beis b o s enie s aeid
A Glossary of Terms this Manual UseS....... WAl 8 eI WEE S GeE 8 6w eioie 8 0D

Variables (var)
Variable Types, Names, and MaXimum...ueevesseeesesocnscnssosacasesssd
Arithmetic Variables (BVAT)...iviisisenasnncrncsassonosnsoncnoasanasd
Arithmetic Arrays and Matrices (MVAr) .cevieerevsenosenenncssnesensall
String Varfables (SVAr).seeieeecerorcocnseoncsososossoscsensosesenesl?
String Arrays (Savar) s s e s s s s sms swdem sl s sivs ¢ s § s 5 e § sas o198
Specifying mvar, svar, and savar Sizes....ee.DIMiicieeiececneoenaaeld
Creating Private Variables.....cecoeveveeesssLOCAL. cvvtavarnncacesald
Notes and Warnings Regarding LOCAL....c.veevenssoncccscnossassaasnealh
Assigning Values to VariableS....ccoseesseasscessacsssconcanscssaaslb
Using Keywords as Variable NameS..eseecessses e LETerecncinnncnceaneeal?

Operators (ops)
Arithmetic COperators (80P)...iveceesvenencrnseanes 3 aiie & e baes s s 5019
Logical Operators (10P)..iveseeceosssonscescnoncsssonaanns 1 1]
Operator PrecedenCe s s s e s sisis » 5916 eiaio,s sia/e s 9606 & sinie s eiaie & oo o @ies #en s 021

Expressions (exp)
String and Numeric ConStantSicessaes sses enes sioeoanssosssns cseseees 22
The Internal Format of MNUMbDErS....ceocessosscvescnscssasnsscssnnsesld
Arithmetic Expressions (BexpP)is s s s v esion s sem o sime o wsis s wiia o 34
String Expressions (SeXD)iu.s e s s sess e sisnesssssswsoassswssioys I

Editing Your Program
Wiping the Slate Clean...seveeeeeceosoossees e NEWe e e verooaneneesa2B
Line Numbering the Fasy Way.....ceeveeoeeeeeaNUMeienoenenennnnennea25
Looking at Your Programi,.ewessessses s s s ses oo LIS T s swios s o wsie o 26
Deleting Program Lines......eceoveeeesoeascessDELiviceicnninnenanna.26
Renunbering Your Program.......ecoeeseevevee s RENUMituioiinonnnnnnaa2?
Putting Remarks in Your Program.....ececeseseREMiuuunenonnosnnnenae27

Storing and Retrieving Your Program
Storing Your Program a8s TeXt...veeessoeseoess LIST. e iueninreneenenaa29
Retrieving Your Text Program......eoeeeeeees e ENTER ot eeennnnsesea29
Storing Your Program as ToKenS.....oeeoueeeeseSAVE cettivennanneas 0
Retrieving Your Tokenized Program.....eoseeseLOAD i titviennnseasadN
Storing Your Program on Cassette...eseeeeeeseCSAVE .ttt veennnessa?0
Retrieving Your Program from Cassette........CLOAD..c..cvveverascnsoR0

BASIC XE Reference Manual Page vii

Table of Contents

Making Your Program Stop and Go

Making Your Program GO......sov.. 6.4 600 o s s s RUNG woevs @ ase § ¥ G0 § S § el
Finishing Your Program......seeeevveseseeaeesENDiceiieennnn, S |
Making Your Program Really GO..veveensessaeesFAST.oeteiinnenneeessed2
Stopping Your Program.............. vesnvevensDTOPesncoannconensonss a3
Restarting Your Progréam.....ccveececccesssessCONT ovvenannns o v wiae s 98

Finding Out What Your Program is Doing.......TRACE/TRACEOFF........33

Configuring the BASIC XE System

Personalizing BASIC XE..v.eeevenananns viord was S OBE 8 w8 siwn e ww e 9 wm s .o 35
Finding Out What's been Personalized.......f SYS....iievecovennnans 26
Changing Your Computer's Memory....ecceeeeess LOMEM. ; s.6is s 51616 s w160 iwe 5 30
Resetting Variables....iooeeteesenvncsanes oo sCLR: s v i s0ie s avs svesioiios a7
Finding Out How Much Room You Have.........f FRE.......coivieveeesad?
Looking at Variables...... b wisE e 5 e e wela e aies LVAR o ¢ aiacs & 0 5 s s wiei s 37
Accessing the Extra Memory in a l?DXE o s w:os s EXTEND voia v ' emie woie oo dB
Exiting BASIC XE
Going to the DS s s sem s s s 5ie s s0as oo ¢ e s 5 DOS (CP)eswissoimmsass ..39
Going on Long TripS..ecesesnssnss NI o | - NEvp——— . By o visie v e 29

Beginning Data Input/Output

Introducing AtArT U0k wew s s oo s omie sisie & 9608 6655 § 51018 8 08 @188 S008 o 85678 8 & 41
Preparing To Do Some I/0...0cuvunnsOPEN WiE & s 2040
Cleaning Up After Doing I/0..c.evevncearesesssCLOSE. uviviunnnena . 43
Displaying Information..ssescssssssesessosses s PRINFGenconnssnnsones .43
Getting Informmation..... senvessise sessssvenres s INPUT. sovews csssecsesedd
Storing a Single Byte...ccoevecececceconvsassPUTeucccnse wup s e ceessdS
Retrieving a Single Byte....voveeaes B § Sieie s dOBT s s wovve susm s ajosw o aivs o 45
Going Directly to the Printer.......cceee....LPRINT..... o0 wrain o @i ...45
Skipping to the Right Place.:sesssnsssnsvwis«TABss s siow s o6 s aiais s wiws 61 46
Another Way of Skipping..¢evsevevveesessef TAB.....o. R ——— |

Advanced Data Input/Output
Formatting Infommation as You Display It.....PRINT USING...........47
Changing Your Character Display..... weessees NORMAL/INVERSE........ 50
Storing Blocks of Data on a Disk Drive.......BPUT. 54 swws eiwe s wadl
Retrieving Blocks of Data from a Disk Drlve..BGET... 51
Storing Records on a Disk Drive.......cvee...RPUT. o in & wrase o wiel DD
Retrieving Records from a Disk Drive.....ceecRGET..vivenienennnnessdd
Storing Binary Files on a Disk Drive.........BSAVE............54
Retrieving Binary Files from a Disk Drive....BLOAD.....ccovevnenaa.nd
Finding Out Where You Are on the Disk........ NOTE. ¢evuee [|| |
Telling the Disk Where You Want To Re........POINT........ vessensaeD
Finding Out How a Device FeelsS...eevaoseaeseeSTATUS.iivvvnnnneea b5
Doing X-tra Special I/0....cc0uuuns wreie oo i 5 e XA Ok o 8 wres seTs & iee s were DB

Page viii BASIC XE Reference Manual

Table of Contents

Managing Disk Files
Finding OQut What's on & DIsk., casises s sios swes sDIRs w0 s sisios oo awise s oDl
Protecting a Disk File.cceevecssesacnoeceaeec PROTECT. ¢ivocnavceeeesbT
Unprotecting a Disk Fileicoesoeosocccooeesss d UNPROTECT . cccevveeneeab?
Changing the Name of a Disk File.............RENAME................58
Deleting a Disk Flle..cous vesnvans ssnssivesons dBRASEa o 600 0 0is:e n winie o 010058

Looping and Jumping Statements
Looping by Numbers.....ceeeeeeeessvcecesesssss FOR/NEXT/STEP.........59

Looping for a While......... eresssnvens «eves WHILE/ENDWHILE........60

Jumping Around in Your Program........esese0eeG0TO .utvinennereenaasBl

Getting Out of LoOpPS.csccscocvence vie waas pwwe POP..cveceense seseceeasB2
Conditional Statements

The One-Liner........ seassse sesdadcssene e so o JE/THEN: ss 00 e sescsvees 63

Either/Or Optlons............................XF/ELSB/ENDIF.........64

Lots of OptionsS.s e seesswsessins s ssseesosssONicassocosnns sesevens .65

Handling Errors
Setting and Raiting Error Traps..............TRAP...... sowsvanssewelBT
Finding Out What's in the TrAp...cceeeeseeef ERRiuevetvincnenoanes BT
A Program Example Using TRAP and ERR.....cocivtviinnnnrsnnenneeess 68
Using STOP and CONT in Frror Handling.....ceiveeeennn sessessessaveshB

Handling Strings

Getting a Character's Number......eoveeeseeef ASCivicurvesscnscssessB9
Getting a Number's Characteriscseaissiessonsl CHRS o s ovs sowsvonssie .69
Finding Out the Length of a Qtring....... of LENcvoosssssonsnasssessBf
Searching Through a String..... oo siasniee of FINDusopososniosvnssesnssll
Finding Out the Location of a String.......f ADR....vvvvvsasnvsnsaasT0
Getting the First Part of a String.f LEFTS..... o wave aaee s @ee 11

Getting the Middle of a String.ceeccsencesesf MIDS.icivoasiococensaaTl
Getting the Last Part of a String..vessossef RIGHT$.:osoenneanns el
Changing a String into a Number.....eveeeeef VAL toiiovnnnnonnenees2
Changing a Mumber into &8 SBtring.,eweseae ool STREuesaoneovivsveesvos T2
Displaying Hexadecimal NumberS......coeoovef HEX$u i noanarnnneaa?2

Using the Game Controllers
Using the Paddles in Your Program..........f PADDLE......0oveuevess.T3
Pressing the Trigger on the Paddle........ of PTRIG. ccccsscssccssscaTd
Using the Light Pen in Your Program........ f PEN..... esvesussnuss s .73
Using the Joystick the Pard Way.cecoossceeefl BTICKcveensssnssnesaesT
Moving the Joystick Left and Right.........f HSTICK.....ccvvevvea..74
Moving the Joystick Up and Down....veeveseef VSTICK. i voennenans .74
Pressing the Trigger on the Joystick.......f STRIG...:ccovtseceesassT4

BASIC XE Reference Manual Page ix

Table of Contents

Graphics
Introducing Atari Graphics..aesseedsesssussesssss sessssnensnsssiessslD
Selecting a Graphics Mode.....eveveeeessaas. .GRAPHICS......... PP .
Changing the Color Palette....occeeesssesseesSETCOLOR..cveessevenss78
Picking a Color..... res e seesees b anssans soeseoesCOLOR. covcrvncevcnneeeld
Plotting PolntS.iseeensosssoneswineswvevniseas PLOT o6 b0 0nenessiisisee80
Drawing Lines...ccceeses woww e w8 ews swn e vaine vn eDRANTD o ss s won s vie s winie B0
Moving Around the Screen......ieecevueveesesPOSITION...0vevieee...80
Finding Out What's on the Screen......... s 900 JHOCATE ¢« winie o 0000 suavi g aina 80
Coloring in BoXeS.:.ssssnvssnsssssecnnssosasssXIO FIlligssaassnnesssBl

Player / Missile Graphics
Introducing P/M GraPRTCE .« cnie ¢ s:ois sivisie siois oe:ais sisiace vinin s 16 s 86 8 olaia aioreie 83
P/M Graphics Conventions........ T e R e R S s ae e wee b e o8
Selecting a P/M Graphics ModC....vvveuinnnnnns PMGRAPHICS............85
Changing the P/M Color Palette.......oev000..PMCOLOR..vccveavnee...86
Moving a P/M....cecesvssncncessnssacssncesse-PMMOVE, coveoocsvosnsesBB
Creating and Firing Missiles...cceeevseeesee . MISSILE. . civeeaeneas. 87
Selecting a P/M's Widthe..veeevuiseeosnnsaons PMWIDTH. . cvvnnenne. . .87
Erasing: & PlAYETice s e sam o ows s viais siie s wwin s oovie » PMODIRG ¢ s s ww s sviv s v s o 88
Looking for a CollisioNeessemeuwsssossnnoosd BUMPoass oo snieenisssuseB8
Cleaning Up CollisionS.iessssssnsssnssvessns s HITCLR: covaavsanoaniss«88
Getting a P/M's AddresS..eecesssanoseessseef PMADR. . oivnveenrenes 89
Using PORE and PEEK with P/M'S.iueveevncnnncens ¥ wieie wianE B el wieve b e s 189
Using MOVE with P/M'Sicvisnwesuscooisinssnssaessnes 5i 8 S0 8 visi s wuien o B9
Using BGET and BPUT with P/M'S..cierineisnonnacssacnnnans shaleretela sxafate 89
Using USR with P/M Siqiwnsesessmevanes W6 b e S Bl & @eie s wers sl 8 e 8 90
Two Player/Missile Graphics Programs...ieeecessssescscsssssnssansssQ0

Sound
Making Music and Raspberries......eeeeveeeeesSOUND e nnnns e |

Sorting Arrays
Introducing the Array Sorting Statements............ cesene wosm g $om s 0 9D
Sorting String and Arithmetic Arrays.........SORTUP/SORTDOWN.......98

Using Fixed Data in Your Program
Putting Fixed Data in Your Program...........DATA......ci0vueevseea99
Accessing the Fixed Data in Your Program.....READ........... sessess99
Deciding What Fixed Data to Access...........RESTORE..............100

Accessing Memory Directly
Looking at a Single Byte of Memory.........f PEEK........... PSR) |
Changing a Single Byte of Memory..c.evvanenn “POKE. cocosiinionneinnes O
Looking at Two Bytes of Memory.......eoe...f DPEEK..c.vvvvaesne. 102
Changing Two Bytes of Memory......veeeevees..DPOKE, .. vivaneans..102
Moving Your Computer's Memory Around.........MOVE........c000veee...102

Page x BASIC XE Reference Manual

Table of Contents

Arithmetic Functions

Making a Number Positive.........o0... sesssl ABS.cccnvons vessssnn 103
Getting Rid of Fractions........ cwivs vows wesl INPewsswosvsns cevsesalOR
Finding Out the Sign of a Number...........f SGN.v.evvevevennansa..103
Conput ing Sguare RootS .« vow s siwe s wwe v owe swsT SQRaws s s s swns suwe s o108
Exponentiating a Number.ceees sessnnsssossont EXPioosvassvesnonsoesild
Computing Natural Logarithms....v..eevveevesf LOGivvearoveonnaaessa104
Comput ing Common Logarithms......ccoeeveeaef CLOG v vevennnn. seeess104
Using the Computer's Random Numbers........f RND....cvovvansunen..104
Selecting Your Own Randan Numbers..........f RANDOM........... creosl04
An Example Program Using Arithmetic FunctionS............ wiw ¢ sws & 9o 10D
Trigonametric Functions
Swapping Between Units of Measure............DEG/RAD...... eeneess107
Comput Ing Cosines. cou s sve o swmi v s viwn vawl O0Basssvnis vessiwe e snend 0T
Comput ing Sines.............. o w wapw s weie s sl DTN w6 s s wwe waw s sape 10T

eeveeesf ATN..

R R)

Computing ArcTangents (TAN"1).......
A Table of Derived Functions........

BASIC and Machine Language Subroutines
Accessing Subroutines by Line Number......
Leaving Simple Subroutines........
Introducing PROCEDURE and its Related Statements......
Giving Names to Subroutines...

..GOSUB. ., ..

sass e

Leaving Subroutines Elegantly
Accessing Procedures..... o ok e e e & mbe ¥ W

...CALL.

v e “een

Accessing Machine Code Subroutines.........f USR.......

Appendices
A: ATASCII Characters and CodeS.....eoeseeveessanns
B: BASIC XE Memory Map.....
C: Compatability with Atari BASIC....
D: Data Space in Extended Memory..
E: Error Situations

D I I I A I NS
ereesen
cesevserennas
...... s

D R I R R P I I I

Index

csssceseccease

««e+sRETURN.

++++PROCEDURE.....
Notes and Warnings Regarding PROCEDURE.......covvenvans

.107
teseseneasss108

.109
sseeeseess109
ve0110

112

sassessne

BASIC XE Reference Manual

Page xi

Page xii BASIC XE Reference Manual

Introduction Extras That BASIC XE Offers You

Extras That BASIC XE Offers You

Of course BASIC XE provides all the commands available in standard Atari BASIC,
but that is only the tip of the iceberg. Youcan LOAD your SAVEd Atari BASIC
programs into BASIC XF and make use of its speed immediately, but soon you'll
want to take fuller advantage of the extras that BASIC XE offers -- extras like:

Faster Program Execution New floating point math routines combine with the
FAST command to produce BASIC programs that execute at near-arcade speed.

Quick Access to the 130XE's Extended Memory Now you can control and utilize
the extra 64k of memory in a 130XE, and you don't even have to be a program-
ming genius to do it. One simple BASIC XE statement makes all that space
available to your program.

Easy Program Formatting and Editing Unlike other BASICs, BASIC XE does not
care whether you use upper or lower case letters when you type in programs.
This alone can make your programs more readable. However, BASIC XE will do
even more for you. It will automatically prompt you with line numbers or
renumber an entire program at your request. Also, the LIST command has a
program formatter built in, thus making your programs easier to follow, no
matter how complex or involved they are. Other editing features include wrap-
around and keyboard repeat, If you enter a program line that's longer than the
length of the screen, it will "wrap around" to the next screen line so that you
can view it. Also, if you hold down any key for over half a second, it will start
repeating.

Advanced String Handling BASIC XE makes string handling easier and more
powerful at the same time. No longer must you DIMemsion strings before you
use them -- BASIC XE can do it for you., Also, you can now group related
strings together in string arrays just like you're used to doing with numbers in
numeric arrays. Finally, BASIC XE includes new operators and functions that
make string separation, concatenation, and searching a piece of cake.

Built-in Player/Missile Graphics With other BASICs you can use P/M graphics only
if you're a computer wiz. BASIC XE provides nine commands designed
especially for P/M graphics, and this manual shows you how several others can
be applied to P/M graphics. Now P/M graphics are as easy to control as
common playfield graphics.

Easier Joystick Control Not only does BASIC XE support the paddle and joystick
functions available in Atari BASIC, it also adds several others that make
Jjoystick input easier to use.

Explanatory Error Messages Instead of generating a cryptic error number when
something goes wrong, BASIC XE also gives you an explanation of the error so
that you can diagnose and fix the problem quickly. When you need more help to
solve the problem, you can look in Appendix E for a further discussion of error
situations.

BASIC XE Reference Manual Page 1

How to Boot BASIC XE Introduction

How to Boot BASIC XE

There's one thing you should do even before you boot BASIC XFE for the first time:
fill out and return the license agreement that came with BASIC XE. If youdon't,
you won't be added to 0SS's users list, which means that not only will you not get
newsletters and update info, but you won't even be able to get technical help from
0SS when you call. You must have a license agreement on file to get technical
support! So please, please, please, RETURN YOUR LICENSE AGREEMENT!

As you have probably noticed by now, BASIC XE is a supercartridge and a disk. To
use all of the capabilities of BASIC XE, youneed to boot with both the cart. and
the disk. The process is simple:

1) Turn ondrive 1, making sure that it's connected to your computer.

2) Insert the BASIC XE Extensions Disk in drive 1 and close the drive door.
3) Insert the BASIC XE cartridge in your computer.

4) Turn on your computer and wait.

Soon you will see a title screen telling you that the extensions are loading. After
this the screen will clesr and you will see the BASIC XE copyright message at the
top of the screen, and the familiar Ready prompt will appear right below that.
Now you're ready to program!

You can boot without the extensions disk if you want. Onec of two things will
happen, depending upon whether the disk you boot with has the extensions file on
it (instructions for copying the extensions disk and file are below).

If the boot disk does not have the extensions file on it, or if you boot without a
drive, you can still use BASIC XE. However, the following will not be available:

BSAVE, CALL, DEL, EXIT, FAST, LOCAL, LYAR, MOVE,
PROCEDURE, RENUM, RGET, RPUT, SORTUP, SORTDOWN,
the fast math routines, and all P/M commands except HITCLR,

If the boot disk does have the extensions file on it, you will be abhle to use all of
the capabilities of BASIC XE, just as if you had booted with the extensions disk.

Backing Up the Extensions Disk

The extensions disk is in single density Atari DOS 2.0s format, so duplicate it using
whatever command your DOS requires to duplicate this disk format.

Moving the Extensions to Other DOS's

The BASIC XE extensions are in the file BASICXE.OSS on the extensions disk. If
you want to use a DOS other than the one on the extensions disk, all you have to
do is copy the BASICXE.OSS file to your DOS boot diskette. This file is in
standard DOS LOAD format, so copying it should not be a problem,

Warning: BASIC XF will not work with any 'translator' program, nor will it work
with DOSXL.SUP or OurDOS if you use the extensions (because they try to use the
same memory).

Page 2 BASIC XE Reference Manual

Introduction How to Use this Manual
Specials Notations this Manual Uses

How to Use this Manual

This section might seem superfluous because everybody knows how to use a
manual. That may be true, but all manuals have their own idiosyncracies, even this
one, and we thought you might want to know them.

The chapter groupings were designed around topics so that you can find out
everything about a single topic without having to jump from place to place. Also,
the chapters themselves have been grouped into larger topical groups (e.g., the
Graphics and P/M Graphics chapters are together), with the simpler topics near
the beginning of the book. If you are looking for something specific, use the index.
it contains a multitude of references, including subheadings within larger entries.
Finally, if a topic confuses you, try the examples, That's what they're there for!

Special Notations this Manual Uses

This manual's job is to teach you how to use BASIC XE and its extensions without
befuddling you. To this end we have adopted several conventions in our
presentation of the language. We list them here at the beginning so that you can
familiarize yourself with them:

Capitalized Words In the text of this manual, all keywords and functions are
printed in uppercase to differentiate them from the other parts of a statement,

Lowercase Words In the text of this manual, lowercase words are used to denote
the various classes of items which may be used in a program, such as variables
(var), expressions (exp), etc.

Abbreviations in Section Headings If a statement has an abbreviation associated
with it, the abbreviation is placed in parentheses following the full name of the
statement in the heading (e.g., LIST (L.)).

An "f" Preceding a Keyword If an "{" precedes a Keyword in a section heading, it
means that the Keyword is a function, not a statement.

Items in Brackets When showing the usage format of statements and functions, we
use brackets ([]) to surround items which are optional in the format. If the item
enclosed in brackets is followed by an ellipsis (three dots), it means that item may
be used zero or more times in the format (e.g., [exp,...] means that you may use.
0,1,2,3, or more expressions, separated by commas).

Items Stacked in Bars Items stacked vertically in bars indicate that any one of the
stacked items may be used, but that only one at a time is permissible. In the
following example, you may either use the GOTO or the GOSUB, but not both:
|GoTo | 2000
]GOSUB

Notes, Cautions, and Warnings: You will find these starting paragraphs throughout
this manual. Notes are simply interesting asides, Cautions are just that (they point
out things to watch out for), and Warnings describe potentially catastrophic
situations and problems.

BASIC XE Reference Manual Page 3

BASIC XE's Operating Modes Introduction
BASIC XE Keywords and Symbols

BASIC XE's Operating Modes

We humans don't like to do things the same way every time, but computers do.
BASIC XE solves this problem by having three "operating modes". This helps keep
you and BASIC XE working on the same wavelength. The following paragraphs
deseribe these modes and outline what cach is used for,

Direct Mode This is the mode you're in whenever you see the "Ready" (or
"XE Ready" if you've used the EXTEND statement) prompt. For this reason
Direct Mode is sometimes called Prompt Mode. Commands you issue in this
mode are executed immediately (Directly). Most of the time you will use this

mode only to tell RASIC XF what you want to do next.

Deferred Mode You enter this mode when you use the NUM command, type in a
line that begins with a line number, or edit a program line. Commands you
issue in this mode will not be executed until you tell BASIC XF to do so. For
this reason Deferred Mode is sometimes called Program Mode. When you tell
BASIC XE to execute a program (i.e., some numbered lines), it will use the line
numbers to determine the order in which you want the program executed.

Execute Mode BASIC XE goes into this mode when you tel] it to start executing a
program and will remain in it until the program halts. The halt can occur
before the program is finished if the program causes an error, or if you press
BREAK or SYSTEM RESET.

BASIC XE Keywords and Symbols

The following table shows all the words and symbols that mean something special
to BASIC XE:

ARS DATA FPE LVAR PMWIDTH RUN TRAP
ADR DEG GET MID$ POINT SAVE UNPROTEC
AND DEL GOSUB MISSTLE POKE SET US ING
ASC DIM GOTO MOVE POP SETCOLOR USR
ATN DIR GRAPHICS NEW POSITION SGN VAL
BGET DOS HEX$ NEXT POINT SIN VSTICK
RIOAD DPEFK HITCLR NORMAL PROCFEDURE SORTDOWN WHILE
BPUT DPOKE HSTICK NOT PROTECT SORTUP XI0
BSAVE DRAWTO IF NOTE PTRIG SOUND ! "
BUMP ELSE INPUT NUM PUT SOR # $
BYE END INT ON RAD STATUS % &
CALL ENDIF TINVERSE OPEN RANDOM STEP ()
CHR ENDWHTLE LEFT$ OR READ STICK * ¢
CLOAD ENTER LEN PADDLE RFEM STOP + -
CLOG ERASFE LET PEEK RENAME STR$ ’ <
CLOSE ERR LIST PEN RENUM STRIG <= <
CLR EXIT LOAD PLOT RESTORE SYS = >
COLOR EXP LOCAL PMADR RETURN TAR >= A
CONT EXTEND LOCATE PMCLR RGET THEN 3 :
Ccos FAST LOG PMCOLOR RIGHT#® TO

Ccp FIND LOMEM PMGRAPHICS RND TRACF

CSAVE FOR LPRINT PMMOVE RPUT TRACFQFF

Page 4 BASIC XE Reference Manual

Introduction A Glossary of Terms this Manual Uses
adata to Expression
A Glossary of Terms this Manual Uses

adata Short for "ATASCII Data". Any ATASCII character, excluding
commas and carriage returns. (see DATA for more info.)

aexp Short for "arithmetic expression”.

alphanumeric The letters A through Z (either lower or upper case) and the
digits 0 through 9.

aop Short for "arithmetic operator".

Arithmetic An expression that evaluates to a number. For more informa-

Expression tion, see the Expressions chapter.

Arithmetic A unary or binary operator that performs a math operation,

Operator

Arithmetic A location where a single number is stored.

Variable

Array A one-dimensional structure in which each element (cell) is
uniquely described by its element number. The Variables chapter
gives a more in-depth definition.

avar Short for "Arithmetic Variable".

Binary Anything that has two states (on/off, up/down, action/stasis,
etc.) Not simply "a number system based on powers of 2",

Channel See the Introducing Atari I/0 section of the Beginning Data
Input/OQutput chapter for a complete discussion.

cname Short for "Calling Name". The name used to CALL a
PROCEDURE; may be either a string constant or svar. Note:
substrings and savars may not be used.

Command Anything you tell BASIC XE to do is a command, so both state-
ments and functions are commands. Jf you give a command in
Direct Mode it will be executed immediately, but if you're in
Deferred Mode BASIC XE will not execute the command until you
tell it to do so.

Device A peripheral (add-on) that you can use for I/0. The Introducing
Atari 1/0 section of the Beginning Data Input/Qutput chapter
discusses this term in further detail.

exp Short for "expression".

Expression An expression is any legal combination of variables, constants,

operators, and functions used together to compute a value. Fx-
pressions can be either arithmetic or string.

BASIC XE Reference Manual Page 5

A Glossary of Terms this Manual Uses

Introduction

Floating Point to pexp

Floating Point

filespec

Function

Integer

1/0

Keyword

lineno

Literal String

Logical
Operator

lop

Matrix

Matrix Variable

mvar
Numeric

Operator

pexp

Numbers represented using a decimal point (4.5, -28.49)

Short for "file specifier". A filespec is used when when doing
some types of I/0. You can find a complete definition of this
term in the Introducing AtariI/0 section of the Beginning Data
Input/Output chapter.

A function is a subroutine built into the computer so that it can
be called by your program. Functions and statements differ in
that functions must be used in expressions to accomplish their
task, whereas statements are selfsufficient. COS (Cosine), FRE
(remaining memory), and INT (integer) are examples of functions.

A whole number (not a fraction). Integers may be either positive
(4, 183) or negative (-4, -183),

Short for "Input or Output". This term refers to the transfer of
data between your computer or BASIC program and peripheral
devices like printers, disk drives, etc.

Any word
language.

that means something special in the BASIC XE

Short for "line number". A constant that identifies a particular
program line. Must be an integer from 0 through 22767. Line
numbering determines the order of program execution.

A synonym of "String Constant".

An operator that performs a comparision where the resultis
either "true" (1) or "false" (0).

Short for "Logical Operator".

A two-dimensional structure composed of separate elements,
Fach element (cell) in a matrix is uniquely described by its row
and column number,

An arithmetic variable of 1 (an array) or 2 (matrix) dimensions.
See the mvar section of the Variables chapter for more info.

Short for "matrix variable".
A synonym of " Arithmetic".

Operators are used in expressions to tell BASIC XE how it should
evaluate the variables, constants, and functions in the expres-
sion. There are two operator types: arithmetic and logical.

Short for "Passing Expression". An expression whose value will
be passed passed via CALL to a PROCEDURE, or passed via
EXIT back to the CALL. pexp may be an exp, avar, svar, savar,
or mvar., Note: svars, savars, and mvars must be preceded by a !.

Page 6

BASIC XE Reference Manual

Introduction

A Glossary of Terms this Manual Uses
pmnum to Variable

pmnum

pname

Program Line

rvar

savar
sexp

Statement

String Constant

String
Expression
String Variable

String Array
Variable

Substring
svar
var

Variable

A player or missile number in P/M Graphles. Players are num-
bered 0-3, and missiles 4-7.

Short for "Procedure Name". The name used to identify a
PROCEDURE. pname must be a string constant.

BASIC XF program lines are made up of three elements: the line
number, the program statement(s) (multiple statements are
separated by colons), and the line terminator (a RETURN). In an
actual program, the three elements might look like this:

100 PRINT "I'm a program line.":GOTO 100

If a program line will not fit on one screen line, it will wrap
around to the next screen line so that you can see the entire
program line.

Short for "Receiving Variable". A var which will receive a the
value of a parameter passed either from CALL to PROCEDURE,
or from EXIT back to CALL. Note: svars, savars, and mvars
must be preceded by a !,

Short for "String Array Variable".

Short for "String Expression".

Statements are subroutines built into BASIC XE that will perform
specific tasks for you. Statements and functions differ in that
functions must be used in expressions to accomplish their task,

whereas statements are selfsufficient.

A group of characters enclosed in quotation marks. "OSS is the
best" is a string constant. So are "123456789" and "Hello".

An expression that evaluates to a string constant. May consist
of an svar, an savar element, a string constant, or a function that
returns a string constant.

A variable where a single string is stored.,

An array variable whose elements are strings.

Simply a part of a string (e.g., "abc" is a substring of "abedef").
Short for "String Variable.

Short for "Variable".

This is the term used to describe a quantity which may (or may

not) change. In BASIC XE, there are two basic types of
variables: string and arithmetic.

BASIC XE Reference Manual Page 7

Your Additions to the Glossary Introduction

Your Additions to the Glossary

Page 8 BASIC XE Reference Manual

Variables Variable Types, Names, and Maximum
Arithmetic Variables

Types of Variables

BASIC XE supports two basic types of variables: arithmetic variables and string
variables. In addition, it supports both arithmetic and strings arrays, and
arithmetic matrices. Arithmetic variables, arrays, and matrices are used to store
numbers, and may be used only where numbers are required. String variables and
arrays store character strings and may be used only where a character string is
required.

Variable Names

All variable names must start with an alphabetic letter, but the rest of the
characters in the name may be either letters or digits. Also, variable names must
be less than 120 characters long. Finally, string varable and array names must end
with the dollar sign ($) character. The following examples should make these
requirements clearer:

Arithmetic Names String Names

Rate Name$
Playerlscore A$
Temp Title$

Number of Variables

BASIC XE limits you to a maximum of 128 variables. If you need more than 128
(which is unlikely), you might use elements of an array as individual variables
instead of having a separate name for each. You might also use LOCAL to create
reusable private variables. To clear the variable name table of extraneous names
(possibly after an error 4), LIST your program to disk or cassette, type NEW to
clear the variable name table, and then ENTER your program back into memory.
We suggest that you use SET 5,0 and SET 12,0 before doing this.

Arithmetic Variables (avar)

Arithmetic variables are used to store numbers, and are the most common variables
used. Here are some examples of arithmetic variables in use:

188 Input *‘avar Value)) ",X
118 Print “¥: "

120 Print "HAZ:
138 Print “o/X:
140 Print 'eAN: ";Exp (X)
150 Print "Ind¥): *;Lo0g(H)
168 Print "log(X): ";Clog(X)
178 Print :Goto 108

BASIC XE Reference Manual Page 9

Arithmetic Arrays and Matrices Variables

Arithmetic Arrays and Matrices (mvar)

An arithmetic array is a group of separate arithmetic variables (called elements or
subscripts of the array) which share a common name, and may accessed only by
specifying the number of a given element as well as the name of the arithmetic
array. If you think of an array as a string of pearls the idea is easier to under-
stand. If you want to list the worth of each pearl (for insurance purposes), your
list might look like:

Pearl 1: $1000.00
Pearl 2: $950.00
Pearl 3: $1125.00
Pearl 4: $1100.00
Pearl 5: $1050.00
Pearl 6: $1200.00

Translated into a BASIC XE arithmetic array, your list would be:

160 Pin Pearl(s)

118 Pearl(6)=-1000
128 Pearl(i)=358

138 Pearl(2)=1125
140 Pearl(3)=1i60
150 Pearl(4)=-1850
160 Pearl(5)=1280

Notice that the elements of the BASIC XE arithmetic array are numbered starting
at zero. This doesn't seem right because we humans don't think of zero as a
number, but - as far as computers and mathematicians are concerned - it is.

The DIM statement on line 100 is used to tell BASIC XE how many elements you
want reserved for the arithmetic array named "Pearl". DIM is discussed in greater
detail in its own section later in this chapter.

An arithmetic matrix is similar to an arithmetic array, except that it is two dimen-
sional. This means that there are two numbers required to specify a given
element: a row number and a column number. Our string of pearls analogy can be
extended to describe matrices if you consider a matrix as a bunch of pearl strings.
Now, your price list would look something like:

String 1 String 2 String 3
Pearl 1: $1000.00 Pearl 1: $875.00 Pearl 1: $1100.00
Pearl 2: $950.00 Pearl 2: $1075.00 Pearl 2: $980.00
Pearl 3: %1125.00 Pearl 3: $1300.00 Pearl R: $1115.00
Pearl 4: 31100.00 Pearl 4: $990.00 Pearl 4: $1120.00
Pearl 5: $1050.,00 Pearl 5: $1250.00 Pearl 5: $890.00
Pearl 6: $1200.00 Pearl 6: $1035.00 Pearl 6: $1225.00

Page 10 BASIC XE Reference Manual

Variables Arithmetic Arrays and Matrices

Translated into a BASIC XE arithmetic matrix, your list would be:

100 Din Pearls(2,5)

110 Pearls(9,8)=1008:Pearls(1,0)=875:Pearls(2,6)=1100
120 Pearls(®,1)=956:Pearls(i,1)=1875:Pearls(2,1)=588
130 Pearls(8,2)=1125:Pearls(1,2)=13060:Pearls(2,2)-1115
140 Pearls(0,3)=1166:Pearls(1,3)=990:Pearls(2,3)=-1120
150 Pearls(0,4)=1058:Pearls(i,4)=1256:Pearls(2,4)=890
160 Pearls(0,S5)=1200:Pearls(1,5)=1835:Pearls(2,5)=1225

As with arithmetic arrays, the first element index is 0 rather than 1, so the first
pearl on the first string is accessed using the subscript (0,0). The first 0 is the
number of the pearl string (the row number), and the second is the number of the
individual pearl (the column number). This analogy might lead you to believe that
a matrix is just an array where each element is itself an array (our list is one of
strings of pearls, and each string of pearls is a group of individual pearls). This
conception of matrices is, in essence, correct and is very useful when trying to
manipulate matrices.

When you use a single element of an arithmetic array or matrix, you are actually
using a single number (which is what an arithmetic variable is). This means that
avar, array(element), and matrix(row,column) may all be used whenever a number is
wanted.

BASIC XE Reference Manual Page 11

String Variables Variables
String Array Variables

String Variables (svar)

String variables are used to store literal strings of characters. A literal string of
characters is simply some characters enclosed in double quotes; for example,

“This string entlosed in quotes is a literal string"

“Nuwbers in quotes are strings too - 12345%

“Even control charcters are - b H{a/ALA"

are all literal strings. As mentioned earlier, string variable names are just like
arithmetic variable names, except that they must end with a dollar sign ($).

Before you use a string variable, you need to tell BASIC XE the size (maximum
number of characters) of the variable. This is done using the DIM (dimension)
statement as follows:

DIM String$(66), A$(10)

Note: When you manipulate strings a character at a time, remember that the
element numbering begins at 1, not 0 (as with arithmetic arrays and matrices), For
example, if you want to get the first character of A$ (which contains the string
"ABCDEFG"), you would use A$(1,1), and get "A" as the result. If you try to get
the "A" by using A#(0,0), you will get an error.

Bonus: BASIC XE can automatically dimension a string variable for youif you

don't manually DIMension it. For more information about this feature see the
discussion of SET 11,aexp.

String Array Variables (savar)

A string array is very similar to an arithmetic array, except that each element is a
string variable, not an arithmetic variable.

String array variables resemble string variables in three aspects: their names must
end with a dollar sign, they must be DIMensioned before being used, and their
element numbering begins at 1, not 0. However, there are two dimensions to a
string array: the number of strings in the array, and the length of the strings. The
following examples show how to specify both of these dimensions:

DIM Sarray$(4,40), A$(10,100)

This example first dimensions a string array called "Sarray$" to contain 4 strings,
each 40 characters long, and then dimensions "A$" to 10 strings, each 100
characters long.

To access one of the strings in a string array you specify the string's number
(remember, the first string is number 1, not 0) followed by a semicolon (;), as
follows:

188 Din Test$(3,5)

110 Test$(1;)="This "

128 Test§S(2;3="is a
130 Test$(3gi="test."

As you may notice, savar(element;) is equivalent to svar, and may be used
wherever svar is used, unless stated otherwise.

Page 12 BASIC XE Reference Manual

Variables DIM

DIM

mvar (aexpl[,aexp2])
Format: DIM |svar(aexpl) [yoived
savar(aexpl,aexp2)

The DIM statement is used to reserve space for arithmetic arrays and matrices,
and strings and string arrays.

For arithmetic arrays DIM reserves space for aexpl+l arithmetic elements. For
arithmetic matrices it reserves space for aexpl+1 rows of aexp2+1 elements each.
The "+1" is there because arithmetic indexing begins at 0, thus giving you aexp+1
total indices.

DIM reserves space for up to aexpl characters when allocating strings, and space
for aexpl strings, each of up to aexp2 characters, when allocating string arrays.

The following examples illustrate the use and effect of the DIM statement. The
first one reserves 101 arithmetic elements for an array named Al. The second
allocates space for 7 rows of 4 columns each for a matrix called Grid. The last
example reserves 20 bytes for the string Bstr$, and then allocates 100 strings,
each of up to 40 characters, for the string array Friends$.

188 Din A1(108)
118 Din Grid(¢6,3)
120 Din Bstr$(268),Friends$(180,40)

Note: BASIC XE is capable of automatically DIMensioning string variables. For
more information, see SET 11,aexp.

BASIC XE Reference Manual Page 13

LOCAL Variables

LOCAL
Format: LOCAL avarl [,avar2...]

Examples: 100 LOCAL Templ
320 LOCAL Sum,N,Count,Misc

The LOCAL statement allows you more flexibility in your programming because it
enables you to have temporary arithmetic variables within PROCEDURE and
GOSUB subroutines. The way LOCAL works is very simple. When a LOCAL state-
ment is executed, all avar names (no mvars, svars, or savars) following it become
private until the next EXIT is encountered. What does 'become private' mean?
Simply that you can change the value of a LOCAL avar within its
LOCAL/EXIT bounds without affecting its value outside of these bounds, as if you
had a private copy of the variable. When you use LOCAL, you don't have to worry
about conflicts between routines in your program that use variables with the same
name,

A simple example will help:

10 Test=1234567:Print 10,Test
28 Gosub 40:Print 28,Test

38 End

40 Local Test:Print 48,Test
50 Test=@9.54321:Print 58,Test
60 Exit

Note the that PRINT statements purposely display the current line number as well
as the value of Test. This is simply to make tracing the flow of the program

easler. DNoes it surprise you to find that the output of the above program will look
something like this?

i@ 1234567
40 1234567
50 @8.54321
20 1234567

Let's examine that program a little closer. Line 10 is simple enough - we just
assign a value to the variable Test and verify that it has been accepted. In line
20, we first GOSUB to a routine and then again display the contents of our
variable, Note that in the program's running this PRINT is the last thing execcuted
(other than the END). Line 40 begins the interesting part of this program. We
declare that Test isa LOCAL variable and, once again, display its value, Line 50
is a repeat of line 10 except that we assign a different value to our now-private
variable Test. Note that the PRINT verifies our change. Finally, in line 60, we
use EXIT to restore Test to its original value, as shown by the PRINT in line 20.

The point of all this was to show that our subroutine (lines 40 through 60) could do
what it liked with the LOCAL variable without affecting its value in the rest of
the program,

Bonus: when you POP a LOCAL variable the non-private value is restored, so you
can use LOCAL and POP to create private variables even when you're not in a
subroutine,

Page 14 BASIC XE Reference Manual

Variables Notes and Warnings
Regarding LOCAL

Notes and Warnings Regarding LOCAL

Note: the fact that LOCAL may be used with GOSUB subroutines is not an
accident, EXIT was specially designed to find out what type of subroutine
(PROCEDURE or GOSUB) it is terminating, and handle the returning condition
appropriately. This small fact alone allows you to modify your existing programs
to use LOCAL variables without having to change all GOSUBs to CALLs. Also,
there are occasions where it could be advantageous to use GOSUB instead of
CALL. In particular, GOSUBbing to an absolute line number is significantly
quicker than any other type of subroutine access when your program is in
FAST mode.

Note: variables do not change value when they are made LOCAL. You can see this
in the example earlier in this section, The PRINTed value of Test in line 40 is still
1224567, even though it has been made private. If you want your LOCAL variables
to be zeroed before you use them, you must equate them to zero yourself.

Note: since you are still limited to 128 different variable names, you might
consider using the same LOCAL variable names in all your subroutines if you are

pushing the name limit. For example, you might start each subroutine with the line

Fach subroutine then has four variables available exclusively for its own use, and
you have used only four names from your maximum of 128.

Technical Note: LOCAL pushes the current value of an avar onto BASIC XE's
stack when that variable is made private. When an EXIT is encountered, the value
is popped off the stack and into the avar, thus restoring its previous value.

Warning: you may use LOCAL only at the beginning of subroutines that are
terminated by an EXIT (not a RETURN), unless you POP the previous values
before RETURNing. For more info, see POP.

BASIC XE Reference Manual Page 15

Assigning Values to Variables Variables

Assigning Values to Variables

The assignment statement is used to assign a value to a variable, and is of the
general form variable=expression. The variable and expression must be of the
same data type (arithmetic or string) or you will get an error.

Arithmetic Assignment

Arithmetic assignment is the simplier of the two, so we'll discuss it first. The
syntax is simple: avar=aexp, but the extensions are numerous. When you remember
that subscripted arithmetic arrays and matrices are functionally equivalent to
simple arithmetic variables, all of the following become valid:

188 Din Array(16),Matrix(16,18)
120 Arithvar=27.4
13@ Matrix(e,8)=27.4

String Assignment

String assignment can be done two ways: by substring and by entire string. Before
discussing these two methods, we need to discuss what "string" and "substring"
mean. The following table defines these terms when used as both as the source
and destination in an operation (e.g., in A$="abc", A% is the destination, and "abc"
is the source):

String As Source String As Destination String
S$ characters J..LEN value characters 1..DIM value
S$(n) characters n..LEN value characters n..DIM value
$$(n,m) characters n..m characters n..m

Assigning an entire string is easy; the form is simply svar=sexp. Whatever svar had
in it before is wiped out and sexp is put in. The LEN value is set to the length of
the sexp string. Here are some examples:

10 Din 51%(508)3,525(50)
28 S1$="A string assignwent"
38 S28="pnother string assignwent"

Substring assignment can be done using either the format svar(n,m)=sexp or
svar(n)=sexp. In the first case, characters n through m (inclusive) of svar will be
changed to sexp. If sexp evaluates to a string longer than the specified
destination substring, only the characters up to the substring length will be
assigned. If the sexp string has fewer characters than the destination substring,
only LEN(sexp) characters will be changed in the substring. Also, RASIC XT will
update the length of svar if the substring assignment makes it longer. The second
method of substring assignment replaces n through the DIM value of svar with the
sexp string, and then updates the length of svar. The example on line 90
illustrates this type of substring assignment. The others show the two subscript
method:

48 Ren “lise PIH's from above™

50 Si$=r"aBCD™

60 515(4,83="1234":Ren S1$="ABCD1234"

70 916¢4,43="ab":Ren 515="abCD1234"

80 52$="BASIC KE - Precision Software"

90 S2$(10I="FROM 055" :Ren "“525=BASIC KE from 0SS"

Page 16 BASIC XE Reference Manual

Variables Assigning Values to Variables
LET

To assign a value to a string array (savar), first you specify which string element
of the savar you want to use (followed by a semi-colon), and then treat it just like
a normal string (svar). The following examples help clarify this procedure:

10 Pin 52$(10,40)

20 Sa$(1;)="A string assignwent’:Ren *savar version of 28 above"
38 Sas$(2;)="aBCD"

48 52%(2;4,8)="123456" :Ren **savar version of 68 above"

50 a(3;)="BASIC KE - Precision Software"

68 Sa$(3;1@)=""from 055":Ren “savar version of 90 above"

BASIC XE also allows you to do string concatenation (tacking one string onto the
end of another) easily using the assignment statement. To concatenate strings,
simply change the sexp in the string assignment format to sexpl,sexp2,sexp3,....
sexp2 iIs then concatenated to sexpl, sexp3 is concatenated to the result, and so
on. The following examples show concatenation:

18 Ppin A%$(18), 55(28) C$5(40)

20 a%=" from 055

30 BS="BASIC HE"

40 C€$=B$,"™ a hot language",A$

50 BS=BS.a$

68 Print C$:Print BS

Note that line 50 is equivalent to
56 BS(Len(BSY+1)=A%

Note: it is possible to store into the middle of a string by using subscripting;
however, the beginning of the string will contain garbage or nulls.

LET

Format : LET <assigmment statement>
Example: LET GOTO=3.5
LET LETTFRS$="a"

LET allows you to assign values to variables with names that start with or are
identical to a keyword. In the first example, LET allows GOTO to be used as an
arithmetic variable rather than as the GOTO statement. The second allows the
use of LETTERSS$, the first the letters of which are the keyword LET.

There are a few keywords which CANNOT be used as variable names even when
you use LET. They are the unary logical operator NOT, and all the function names
(ABS, LEN, etc.) Here is an example of what will happen if you try to use NOT as
the first three letters of a name. Type in this program:

10 CSHARP=37
20 LET NOTE=CSHARP
30 PRINT NOTE

When you RUN it, a "1" will get printed on the screen, not a "37", If you LIST the
program you will see why. Line 30 is listed as
38 Print Not E

because BASIC XF does not allow "NOT" as the start of a variable name and inter-
prets it as the keyword NOT.

BASIC XE Reference Manual Page 17

Space For Your Notes Variables

Space For Your Notes

Page 18 BASIC XE Reference Manual

Operators Arithmetic Operators

Operators

BASIC XE has two types of operators: Arithmetic QOperators and Logicsl
Operators. As you will see in the expressions chapter, either of these two types of
operators may be used in arithmetic expressions, while neither may be used in
string expressions.

Before discussing these two types of operators, a reminder of the meaning of
'binary' is needed. As stated in the glossary, this term does not mean simply "a
number system based on powers of 2, in which 0 and 1 are the only digits". When
'binary' is used to mean this, it is an abbreviation of 'binary number system', and
applies only to numeric representations within this system. Anything which has
only two states (on and off, up and down, action and stasis, etc.) can be considered
binary. When we are discussing operators, 'binary' means that the operator
requires two operands. For example, * is a binary operator because it multiplies
one value by a second (4*3 means something, while *3 means nothing). Similarly,
'unary' is used to describe an operator which requires one operand (- is a unary
operator when we use it to signify that a number is negative, e.g. -5).

Arithmetic Operators (aop)

BASIC XE supports 8 binary and 2 unary arithmetic operators. The binary ones
are:
Symbol Function
Addition
Subtraction
Multiplication
Division
Fxponentiation
Ritwise AND
Bitwise OR
Bitwise FOR (Fxclusive OR)

R—=2 3~ #1 +

The first four are straightforward enough since they are the arithmetic operators
we use all the time, but the last four require some explanation.

The " operator {s used to raise a number to a specified power. For example, 4”3
simply means "multiply 4 by itself 3 times", or 4*4*4, which equals 64.

The &, !, and % operators allow you to perform bitwise operations on positive
integers up to 65,535. If you use them with non-integers (e.g., 4.3, 8.528, etc.),
the number will be rounded to the nearest integer before the operation, If you try
to use them with negative numbers an error occurs. The following tables show the
results of comparing two bits for each of these operators:

Bit A Bit B Result Bit A Bit B Result Bit A Bit B Result

1 &1 =1 1! 1 =1 1 % 1 =0
0 & 1 =0 0o ! 1 =1 0 % 1 = 1
1 & 0 =0 1t 0 =1 1 % 0 =1
0 & 0 = 0 o' 0 =0 0 % 0 = 0

BASIC XE Reference Manual Page 19

Logical Operators Operators

The following examples illustrate the results of using each of these bitwise
operators with the operands 5 and 39:

& example ! example % example
00000101 (5) 00000101 (5) 00000101 (5)

& 00100111 (R9) ! 00100111 (39) % 00100111 (39)
00000101 (5) 00100111 (39) 00100010 (R2)

The two unary arithmetic operators are plus (+) and minus (-), and are used to
denote the sign (positive/negative) of a number. For example, +5 means "positive
five" and -5 mesns "negative five". Note: If you do not specify the sign of a
number, BASIC XE assumes that the number is positive.

Logical Operators (lop)

BASIC XE supports three types of logical operators: relational, unary and binary.

The relational operators compare two expressions, giving a boolean (true/false)
result, and are most frequently used in conditional statements (i.e., the IF state-
ments). They may also be used in arithmetic expressions, returning a 1 if the
relation is true, and a 0 if it's false,

The first exp is less than the second exp.

The first exp is greater than the second.

The exps are equal to each other.

<= The first exp is less than or equal to the second.

>= The first exp is greater than or equal to the second.
<> The two exps are not equal to each other,

v A

Examples of the relational lops may be found in the Expressions chapter.

The unary logical operator is NOT, and is used to reverse the result of an
expression. For example, the expression 2<3 is obviously true, but the expression
NOT(2<3) is false, since NOT inverts the truth of "2 is less than 3".

There are two binary logical operators: AND and OR. Do not confuse them with
the bitwise binary arithmetic operators & and !. They are not the same! AND and
OR are used to create compound logical expressions like

IF X=3 OR Y=9 THEN GOTO 400

WHILE Done=0 AND Bail=0
Note how these operators are different, Only one of the two operand expressions
must be true for the logical OR to be true, while both must be true for the logical
AND to be true.

Page 20 BASIC XE Reference Manual

Operators Operator Precedence

Operator Precedence

Operators require some kind of precedence (a defined order of evaluation) or we
wouldn't know how to evaluate expressions like 4+5%3. Is this equal to (4+5)*3 or
4+(5%3)? Without operator precedence it's impossible to tell. RASIC XE's normal
precedence is very precise, as shown in the following table. The operators are
listed in order of highest to lowest precedence. Operators on the same line are
evaluated left to right in an expression.

@] Parentheses

<> =<=>= <> Rel. lops in String Comparisions

NOT + - Unary NOT lop, Unary Plus and Minus aops
A Exponentiation

% !& Bitwise EOR, OR, AND aops

*/ Binary Multiplicative aops

E Binary Additive aops

<> =<=5=4 Rel. lops in Numeric Comparisons

AND Binary AND lop

OR Binary OR lop

If you're ever in a situation where you're unsure of the evaluation of an
expression, use parentheses to insure the proper order of evaluation. Fxamples of
operator precedence during expression evaluation can be found in the
Expressions chapter.

BASIC XE Reference Manual Page 21

Space For Your Notes Operators

Space For Your Notes

Page 22 BASIC XE Reference Manual

Expressions String and Numeric Constants
Internal Format of Numbers

Expressions

Expressions are constructions which obtain values from variables, constants, and
functions using a specific set of operators. BASIC XE supports two types of ex-
pressions: arithmetic (aexp) and string (sexp). Before discussing these two types of
expressions something needs to be said about the constants RASIC XE allows.

String and Numeric Constants

String constants are frequently called literal strings because they are just a group
of characters enclosed in double quotes ("):
"“This string enclosed in quotes is a3 string constant”

“Husbers in quotes are strings too - 12345"
“So are control charcters are - |} H{s/A\A4dA"

To get a double quote into a string constant, use two double quotes in a row (").

RASIC XE allows you to enter numeric constants (numbers) in one of two ways -
decimal or hexadecimal. Decimal numbers may either be integers, fractions, or
scientific notation. The following examples illustrate these three types of
numbers:
Integers Fractions Sci. Notation
4027 -67.254 4.23E2
-2 225.04 23.4E-14

The "E" in the scientific notation examples stands for "Exponent". The number
following it is the power of ten (e.g., 4.33E2 means "4.23 * 102", or 423).

Hexadecimal numbers can only be integers, and the digits must be preceded by a
dollar sign ($), as in the following examples:
$4A30 -f0A $6FF
-$E -$7B2D S$FFFF
Notice that the unary minus (denoting a negative number) precedes the dollar sign.
The maximum hexadecimal value allowed is $FFFF (65,535 decimal).

Internal Format of Numbers

Note: this section is provided for those of you who are interested in the technical
aspects of BASIC XE. You can skip this section without impairing your ability to
use BASIC XE.

All numbers in BASIC XFE are Binary Coded Decimal (BCD) floating pointing point
with a five byte (10 BCD digit) mantissa and a one byte exponent. The most
significant bit of the exponent is the sign of the mantissa (0 for positive, 1 for
negative), and the rest of the bits are the value of the exponent in excess 64
notation. Internally, the exponent represents powers of 100 (not powers of 10).
For example, 0.02 equals 2*107%, which equals 2*1 00'1, so the internal represen-
tation is
3F 02 00 00 00 00

$3F is the exponent (-1) plus 64 ($40), and the mantissa is 2. The implied decimal
point is always to the right of the first byte of the mantissa. An exponent less

BASIC XE Reference Manual Page 2R

Expressions Arithmetic Expressions
String Expressions

than $40 indicates a number between 0 and 1, while an exponent greater than or
equal to $40 represents a number greater than or equal to 1. Zero is represented
by a zero mantissa and a zero exponent.

In general, numbers have a 9 digit precision. For example, only the first 9 digits
are guaranteed to be significant when INPUTting a number. You can sometimes
get 10 significant digits in the special case where an even number of digits are to
the right of the decimal point.

Arithmetic Expressions (aexp)

Arithmetic expressions are those which evaluate to a number, and are made up of
one or more of the following list of operands, separated by operators:

1) a numerie constant (number)

2) an avar (or subscripted mvar)

3) a function which returns a number

4) string comparision using relational lops

The first three are straightforward, but the fourth requires explanation. You may
use string comparisions in arithmetic expressions because the comparision results
in a 1 (true) or 0 (false). For example, "ABC"<"ACC" would return a 1, since
"ABC" precedes "ACC" when the two are alphabetized. Conversely,
"ABC">"ACC" evaluates to 0. An arithmetic expression can simply be one of the
above described operands, or two or more of them separated by operators (either
arithmetic or logical). The following examples of arithmetic expressions include
the evaluation order of the operators (if any) and the result:

Expression Fvaluation Order Result
3¥(4+(2177)*%2) el 30
"AR">"AC"+7*(ASC("A")) >,ASC,*,+ 455
X=100 : Y=2 N/A

INT(X*Y/3) *,/,INT £6

String Expressions (sexp)

String expressions are much simpler than arithmetic expressions since there are
fewer things they can be. The following list shows all the valid string expressions:
1) a string constant (literal string)

2) an svar (or subscripted savar)
3) a function which returns a string
4) a substring of an svar or savar

Notice that nothing has been said about operators in string expressions. That is
because none are allowed (with the special exception of the comma (,) for concate-
nation in string assignment). A string expression may be only one of the above, as
in the following examples:

"A literal string" A%(3)

A$ Sa$(1;3)
sa$(1;) A$(4,8)
STR$(126.83) Sa$(1;4,8)

Page 24 BASIC XE Reference Manual

Editing Your Program NEW
NUM

Editing Your Program

The statements in this chapter ease the job of editing a BASIC XE program, so
that programming need not be considered a chore. This chapter covers the state-
ments NEW, NUM, LIST, DEL, RENUM, and REM.

NEW

Format: NEW
Fxamples: NEW
100 NEW

This command erases the BASIC XE program currently in memory. Therefore,
before typing NEW, make sure you have saved your program (using SAVF, CSAVFE
or LIST) if you want to keep it. NEW also clears BASIC XE's internal symbol table
so that no variables are defined. NEW is normally used in Direct Mode but is
sometimes useful in Deferred Mode as an alternative to END, when you want a
program wiped out after it has RUN.

NUM
Format : NW Istartl][,incl
Examples: NUM
NWM 50
NWM ,1
NUM 50,1

The NUM command enables BASIC XE's automatic line numbering ability. This
facility can increase your program entry speed because it puts in the program line
numbers for you. If no start or inc is given (first example), NUM will start
numbering from the last line number currently in the program in increments of 10.
If there is no current program, NUM will start with line number 10. If the starting
line number alone is given (second example), NUM will start numbering from that
line number in increments of 10. If the increment alone is given (third example),
NUM will start numbering from the last line currently in the program, in
increments of inc. If both the starting line number and the increment are given
(last example), NUM will start numbering from the given line number in increments
of inc. Note: neither start nor inc may be 0.

Four things cause the automatic line numbering to stop:
1) If you press <RETUR N> immediately following the line number.
2) If BASIC XF encounters a syntax error on a program line you type in.
3) If the line number the automatic numberer would use already exists.
4) If the automatic numberer would generate a number larger than 327R7.

Note: using NUM in Deferred Mode always returns you to Direct Mode.

BASIC XE Reference Manual Page 25

LIST Fditing Your Program
DEL

LIST (L.)

Format : LIST [linenol][,[1ineno2]]
Examples: LIST

LIST 10

LIST 10,100

LIST 10,

Note: this section covers only the editing uses of LIST. For its program saving
uses, see the Storing and Retrieving Your Program chapter.

LIST causes the program currently in memory to be displayed so that you can edit
or study it. If LIST is used alone (without linenol or 2), the entire program is
displayed (first example). If you follow it with a single line number, only that line
will be displayed (second example). If you specify two line numbers (separated by
commas), lines linenol through lineno2 will be LISTed (third example). If you give
the starting line number, a comma, and no ending line number, the ending line
number is assumed to be the last line in the program (last example).

Note: You can control the automatic indention of structured statements (FOR,
WHILE, etc.) when they are LISTed using SET 12,aexp. You can also control the
casification using SET 5,aexp. See SET for more info.

DEL

Format : DEL linenol[,lineno2]
Examples: DEL 100
DEL 1000,1999

DEL deletes program lines currently in memory. If a single line number is given,
only that line will be deleted (first example). If two line numbers are given, lines
linenol through lineno2 (inclusive) will be deleted (second example).

Page 26 BASIC XE Reference Manual

Editing Your Program RENUM

REM
RENUM
Format : RENWM [start][,inc]
Examples: RENUM
RENUM 100
RENIM , 20

RENUM 1000,5

RENUM renumbers the program in memory, using start as the starting line number,
and inc as the increment between line numbers. If start is not specified, 10 is
used. If inc is not specified, an increment of 10 is assumed. Note: neither
start nor inc may be 0.

All line number references (e.g., in GOTOs, GOSUBs, etc.) are also renumbered
if they are numeric constants. Line number expressions (e.g., GOTO 10%A) will
not be renumbered.

Caution: if you are RUNning a program in FAST mode, a RENUM in that program
will do nothing.

Caution: If you use LIST in Deferred Mode (i.e., in a program) the line number
values you want to list will not be renumbered by RENUM.

Caution: RENUM will not renumber an absolute line number after a line number
expressed as an expression. If you RENUM the statement

16 On X Gosub 106, 3¥%Y,280

the 100 will be renumbered, but the 200 will not since it follows a line number
expression (3*Y). This situation is possible only in the ON statement.

Warning: If you have a reference to a line number that does not yet exist (e.g. a
GOTO 50 when line 50 doesn't exist), RENUM will not renumber that reference.
After the RENUMbering, however, the non-existent line number might exist, thus
making the reference valid, but it will most likely not refer to the program line
you want it to.

REM (R.)

Format : REM text

Examples: REM This is a remark
10 RFM Routine to calculate X
20 GOSUB 200 : REM Find Totals

REM stands for "remark" and is used to put comments into a program. This
command and the text following it on the same line are ignored by the computer.
However, it is included in a LIST along with the other numbered lines. Rince all
characters following a REM are treated as part of the REMark, no statements
following it (on the same program line) will be executed.

BASIC XE Reference Manual Page 27

Space For Your Notes Editing Your Program

Space For Your Notes

Page 28 BASIC XE Reference Manual

Storing and Retrieving Your Program LIST
ENTER

Storing and Retrieving Your Program

BASIC XE allows you to store your programs in either of two formats - as ATASCII
text, or as the tokenized gibberish internal to BASIC XE. LIST and
ENTER perform program I/0 using the first format, while SAVE and LOAD, and
CSAVE and CLOAD use the second. The reason the tokenized format is offered is
that it is generally more compact than the ATASCII format and always cuts down
on disk/cassette use and 1/0 time.

LIST (L.)

Format : LIST "filespec"[,linenol][,[1lineno21]
Examples: LIST "C:"

LIST "D:DEMO.LIS"

LIST "P:",20,100

LIST allows you to write out the ATASCII text version of the program in memory.
As evident from the examples, filespec may refer to any device. Youmay add any
of the line number specifications (described in the previous chapter's discussion of
LIST) to LIST only a portion of your program to filespec.

Note: the quotes around filespec are required by LIST, unless of course a string
variable is used.

ENTER (E.)

Format : FNTER "filespec"
Fxamples: ENTER "C:"
ENTER "D2:DFMO,LIS"

The ENTER command allows you to read in a program you have saved using the
LIST command, and will not work with programs which have been SAVEd or
CSAVEd. To use this command, you simply need to give the filespec of the
program. Note: whereas both LOAD and CLOAD clear the program memory space
before reading in the new program, ENTER does not, and so is useful when trying
to merge programs together.

Bonus: You can modify what BASIC XE does after completing an ENTER using the
SET 9,aexp command (see SET for more info).

BASIC XE Reference Manual Page 29

SAVE, LOAD Storing and Retrieving Your Program
CSAVE , CLOAD

SAVE (8.)

Format : SAVE "filespec"
Examples: SAVE "D:TEST,BXE"
SAVE "C:"

SAVE allows you to save the tokenized form of a BASIC XE program to any device.
A file saved using this command may then be read back into program memory using
LOAD or loaded and immediately executed using the RUN command.

LOAD (LO.)
Format : LOAD "filespec"
Examples: LOAD "D1:GAME1.BXE"
100 LOAD "C:"

LOAD allows you to load the SAVEd version of a program into memory from any
device. It will not work with programs saved using LIST or CSAVE.

CSAVE (CS.)

Format : CSAVE
Examples: CSAVE
100 CSAVE
100 Cs.

CSAVE is used to save the tokenized version of a program. The difference
between CSAVE and SAVE "C:" is that CSAVE leaves shorter inter-record gaps
and so makes cassette I/0 faster. On entering CSAVE two bells sound to indicate
that the PLAY and RECORD buttons must be pressed, followed by <RETURN>,
Do not, however, press these buttons until the tape has been positioned. Note:
tapes saved using the two commands SAVE and CSAVE are not compatible. Note:
due to a flaw in the Atari OS ROMs (not BASIC XE), it may be necessary on some
machines to enter an LPRINT before using CSAVE, otherwise it may not work
properly. For specific instructions on how to connect and operate the hardware,
cue the tape, etc., see the Atari 410 or 1010 Program Recorder Manual.

CLOAD
Format : CLOAD
Fxamples: CLOAD
100 CLOAD

This command can be used in either Direct or Deferred Mode to load a program
from cassette tape, and may be used only with programs which have been CSAVEd.
On entering CLOAD, one bell sounds to indicate that the PLAY button needs to be
pressed, followed by <RETURN>. However, do not press PLAY until the tape has
been positioned. Specific instructions for CLOADing a program are contained in
the Atari 410 or 1010 Program Recorder Manual.

Page 30 BASIC XE Reference Manual

Making Your Program Stop and Go RUN
END

Making Your Program Stop and Go

The statements discussed in this chapter enable and control the execution of your
BASIC XE program. They are RUN, END, FAST, STOP, CONT, TRACE, and
TRACEOFF.

RUN

Format: RUN ["filespec"]
Examples: RUN
100 RUN "D:MENU"

This command causes RASIC XE to begin executing a program. If filespec is not
specified, the current RAM-resident program is executed; otherwise RASIC XE
retrieves the tokenized program form the specified file and then executes it.
Before execution begins, RUN sets all avars to zero, unDIMensions all mvars,
svars, and savars, CLOSEs all open files (channels), and turns off all SOUNDs. If
an error occurs while your program is RUNning, execution will halt and an error
message will be displayed (unless the error has been TRAPped).

Although RUN without a filespec is most frequently used in Direct Mode, it can
also be used in Deferred mode. For example, RUN the following program (press
<BREAK> to exit):

10 Print "Continuous RUNRing"
28 Run

Note: RUN must be the last (or only) command on a program line when used in
Deferred Mode.

If you want to begin program execution somewhere other than at the first program
line, use GOTO in Direct Mode. Caution: variables are neither cleared nor
initialized by GOTO.

END

Format: END
Examples: END
4000 END

END is used to terminate the execution of a program. In addition to this, it also
closes all files (channels), silences any sounds, and turns off P/M's (if they were
turned on via PMG.). It does not change the graphics mode, however. END is not
required In most programs because BASIC XE automatically closes all files and
silences any sounds after the last program line has executed,

Note: if you have any subroutines following the main program you should put an
END at the end of the main program, or the subroutines may be executed as part
of the main program.

END may also be used in Direct mode to close files, silence sounds, and turn off
P/M's.

BASIC XE Reference Manual Page 31

FAST Making Your Program Stop and Go

FAST

Format : FAST
Examples: FAST
100 FAST

During normal program execution BASIC XE must search from the beginning of
your program for a specified line number whenever it encounters a GOTO, GOSUB,
FOR, or WHILE (this is how most other BASICs do it too). However, you can
change this by using the FAST command. When BASIC XE sees FAST, it does a
precompile of the program currently in memory. During the precompile BASIC XF
changes every line number to the address of that line in memory. Then, whenever
a GOTO, GOSUB, FOR, or WHILE is executed, no line number search is needed,
since BASIC XE can simply jump directly to the specified line's address.

Note: if the lineno used in the GOTO or GOSUB is not a constant(i.e.,is a
variable or an expression), that lineno will not be affected by FAST, and so will
execute at normal speed.

Note: the following statements and situations will terminate FAST mode
execution:

DEL

ENTER

EXTEND

LIST

LOAD

LYAR

RUN "filespec"

SAVE

returning to Direct Mode.

Caution: when you use FAST in Deferred Mode, it must precede your first GOSUB,
FOR, CALL, WHILE, and/or LOCAL. We recommend that you use it as the first
statement in your program.

Caution: if you are using ENTER to create program overlays, you will notice that
the notes and caution above seemingly combine ta preclude the possibility of
ENTERed overlays executing in FAST mode. There is only one way to get around
this: the main program (the part that calls the overlays) cannot be in a loop,
subroutine, or local region when it ENTERs the overlay. If you insure this, you
may then make FAST the first statement in your overlay without creating
problems,

Page 32 BASIC XE Reference Manual

Making Your Program Stop and Go STOP, CONT
TRACE/TRACEOFF

STOP

Format: STOP
Examples: 100 STOP

When you use the STOP command in Deferred Mode in a program, BASIC XE
displays the message "Stopped at line lineno", terminates program execution, and
returns to Direct Mode. STOP does not close files or turn off sounds (as does
END), so the program can be resumed by typing CONT. This can be very useful in
error handling. For more information on this, see the Handling Errors chapter.
When used in Direct Mode, STOP simply displays "Stopped", and returns to Direct
Mode.

CONT

Format: CONT
Examples: CONT
100 CONT

In Direct Mode, CONT resumes program execution which has been interrupted by a
STOP statement, a <BREAK> key abort, or an error. Caution: execution resumes
on the line following the halt, so any statements following the halt, but on the
same program line, will not be executed.

In Deferred Mode, CONT may be used for error handling. For these uses, see the
HRandling Errors chapter.

TRACE / TRACEOFF

Formats: TRACE
TRACFOFF

Fxamples: 100 TRACE
TRACEQFF

These statements are used to enable or disable the line number trace facility of
BASIC XE. When in TRACE mode, the line number of a line about to be executed
is displayed on the screen, surrounded by brackets ([1).

Fxceptions: The first line of a program cannot be TRACEd, nor can the target
line of a GOTO, GOSUB, or CALL, or the looping line of a FOR or WHILE.

Note: a statement issued in Direct Mode is TRACEd as having line number 32768,

TRACEOFF is used to turn TRACEing off once it has been enabled,

BASIC XE Reference Manual Page 32

Space For Your Notes Making Your Program Stop and Go

Space For Your Notes

Page 34 BASIC XE Reference Manual

Configuring the BASIC XE System SET
SETs 1 -7

Configuring the BASIC XE System

The statements and functions in this chapter allow you to change how BASIC XE
will function, as well as find out the current configuration. The statements
discussed are SET, LOMEM, CLR, LYAR and EXTEND, and the functions are
SYS and FRE.

SET
Format : SET aexpl,aexp?2
The SET statement allows you to change a variety of BASIC XFE system-level func-
tions. aexpl is the function you wish to change, and aexp2 is the value to alter

the function. The table following summarizes these SET parameters (default
values are given in parentheses):

aexpl aexp2 Meaning
0 (0) 0 <BREAK> key functions normally.
Note: Returning to Direct Mode does a SET 0,0.
1 <BRFAK> causes a TRAPable error (#1) to occur.
128 <RREAK>s are ignored by BASJC XE. Other subsystems
(FE: for example), however, will still recognize
<BRFAK>s.

1 (10) 1...128 Tab stop setting for the cooma in PRINT statements.

2 (63) 0...255 Prompt character for JNPUT (default is "?").
3 (0) 0 FOR loops execute at least once (ala Atari BASIC).
1 FOR loops may execute zero times (ANSI standard).
4 (1) 0 Instead of repranpting, a TRAPable error (#8)
occurs.
1 On a multiple variable INPUT, if the user enters too

few items, he is reprompted (e.g., with "??")

5 (1) 0 BASIC XE acts 1like Atari BASIC in that it is
sensitive to character case on program entry (either
type-in or ENTER) . Lowercase and/or 1inverse

characters cause syntax errors, except when used in
REM , DATA, or string constants.

I BASIC XE converts text to a nice, readable format
upon entry. Keywords and variable names are
capitalized, while REM text, DATA items, and string
constants remain unchanged.

6 (0) 0 Print error messages along with error numbers.
1 Print only error numbers (ala Atari BASIC).
7 (0) 0 P/M's that move vertically to the edge of the screen
roll off the edge and are lost.
1 P/M's wrap around fram top to bottom and visa versa.

BASIC XE Reference Manual Page 35

SETs 8 ~ 15
SYS

Configuring the BASIC XE System

aexpl aexp2
8 (1) 0

9 (0)

10 (0) 0

11 (40) 1...255

12 (1) 0

13 (1) 0

14 (0) 0

15 (0) 0

Format : SYS (aexp)

Meaning

Don't push (PHA) the number of parameters to a
USR call on the stack (advantage: some assembly
language subroutines not expecting parameters may be
called by a simple USR).

Do push the count of parameters, ala Atari BARIC.

ENTER returns to Direct Mode on completion.
End-Of-ENTER creates a TRAPable error (#32).

The four missiles act independently.

The four missiles are grouped together for movement
purposes. However, their widths and colors remain
independent.

BASIC XE will automatically DIM a string to this
size if you do not DIMension it yourself.
RASIC XE works like Atari BASIC.

The LIST progran formatter does not indent when you
use structured statements (FOR, WHILE, etc.).
LIST indents when you use structured statements.

VAL produces an error (#18) if you use a hex digit
string.

VAL will turn hex digit strings into numbers,
provided that the string begins with a "$".

PRINT USING truncates numbers when they contain more
digits than specified in the formmat.
This situation produces a TRAPable error (#23).

In EXTENDed Mode only, ADR("string") will produce an
error 3.
ADR("string") will always return the address of
string.

f SYS

Example: 100 IF SYS(0)=0 THEN SET 0,128

The SYS function is

used to find out the status of a BASIC XE system function

alterable using SET. aexp is the number of the system function as defined in the

previous section,

Page 36

BASIC XE Reference Manual

Configuring the BASIC XE System LOMEM , CLR
FRE, LYAR

LOMEM

Format : LOMFM addr
Example: LOMEM DPEEK(128)+1024

LOMEM is used to reserve space below the normal program space. You could then
use this space for screen display information or assembly language routines. The
usefulness of this may be limited, though, since there are other more usable
reserved areas available, Caution: LOMEM wipes out any user program currently
in memory.

CLR

Format: CLR
Example: 200 CLR

The CLR statement clears the values in the Variable Value Table and
unDIMensions all svars, savars, and mvars. It does not clear the Variable Name
Table (only NEW does), so all the names remain. If you wish to use an svar, savar,
or mvar after using CLR, you must reDIMension it first.

f FRE

Format : FRE(aexp)
Examples: PRINT FRE(0)

100 IF FRE(0)<1000 THEN PRINT "Memory Critical"
The FRE function returns the number of of RAM bytes left for your use. Normally
FRE(0) returns the total amount of memory left, but if you have used the
EXTEND statement, FRE(0) returns the amount of data space left, and
FRE(1) returns the amount of program space left in the extended memory area.

LVAR (LV.)

Format : LVAR ["filespec"]
Example: LVAR "P:"

LVAR will list all variables currently in use to filespec. Each variable is followed
by a list of the lines on which that variable is used. The example above will list
the variables to the printer. If filespec is not specified, LVAR lists to the screen.

Note: svars and savars are denoted by a trailing "$", and mvars by a trailing "(".
’

Warning: LVAR must be the last (or only) statement on a program line.

BASIC XB Reference Manual Page 37

EXTEND Configuring the BASIC XE System
For 130XE Owners Only!

EXTEND
Format : EXTEND

Until you use the EXTEND command with a 130XE, BASIC XFE operates very much
like Atari BASIC. From the viewpoint of most programs, BASIC XE in 'normal’
mode is Atari BASIC. Faster, and with many additional capabilities, but
very memory compatible.

EXTEND tells BASIC XE to switch from Atari BASIC 'normal' mode to 'extended'
mode. In extended mode, BASIC X[programs reside in the 'extra' 64K bytes of a
130 XE, labeled 'extended memory' in the second diagram of Appendix B.
Programs can use up all 64K bytes of the extended memory without intruding upon
the data space (for strings, arrays, etc.) in main memory (ageain, see Appendix R).

You may use the EXTEND command in Direct Mode at any time--either when you
have no program in memory or after a program is in place. EXTEND will transfer
any program in main memory to the extended memory. Once in extended mode, the
only ways to return to 'normal' mode are to use the NEW command or to LOAD a
program which was SAVEd in normal mode.

On the other hand, you will automatically enter extended mode if you LOAD a
program that was SAVEd from extended mode. Once you have EXTENDed a
program, you can restore it to normal mode only by LISTing and re-ENTERing it.

Note: EXTEND can only be used in Direct Mode, never in a program.

Note: You must be using an Atari 130XE computer (or equivalent) for this
command to work. If BASIC XE cannot find the extended memory banks, you will
see an Frror 60, "Fxtended Memory Not Available".

Note: BASIC XF follows recently established Atari Corporation guidelines when it
uses the extended memory. In particular, if the extended memory is already in use
(e.g., by Atari DOS 2.5's RamDisk), BASIC XFE will not let you EXTEND your
program and will give you an Error 60, as above. Early versions of DOS 2.5, as
well as other programs, may not yet follow these new guidelines, so be sure the

extended memory is available before using the EXTEND command.

Technical Note: BASIC XF fills the extended memory with your program from the
'bottom' up. Referring to the second diagram in Appendix B, this means that
approximately the first 16K bytes of your program will go in Bank 0. The next 16K
bytes go in Bank 1, etc. These numbers are not exact, because (1) RASIC XE
always maintains a minimum of $100 bytes of free space in each bank, and (2)
BASIC XE never breaks program lines between banks.

Still, if you subtract about $400 from the value returned by FRE(1), you will have
a lower bound on the amount of space left in extended memory. Then you could,
for example, use bank 3 to store miscellaneous data, provided that
FRE(1)-$400 shows at least 16K bytes left. See appendix D for details, or see your
Atari 130XE owner's manual for information on how the hardware side of the bank
selection works.

Page 38 BASIC XE Reference Manual

Exiting BASIC XE DOS
BYE

Exiting BASIC XE
The following two commands, DOS and BYE, are used to leave BASIC XF to use
some other utility.

DOS (CP)

Format: DOS
DOS is used to go from BASIC XE to the Disk Operating System (DOS). If you have
not booted a DOS into memory, the computer will go into Self-Test Mode and you
must press <SYSTEM RESET> to return to RASIC XE. If you have botted with a
DOS, control passes to DOS. To return to BASIC XE, type "CAR" if you are using
DOS XL, or press "B" if you're using Atari DOS.

DOS is usually used in Direct Mode, but it may be used in a program as well. For
more details on this, see your DOS manual.

Note: CP (command processor) is exactly equivalent to DOS.

BYE (B.)
Format: BYE

The function of BYE is to exit BASIC XE and go directly into your computer's
Self-Test Mode. To return to BASIC XE, press <SYSTEM RESET>,

BASIC XE Reference Manual Page 39

Space For Your Notes Exiting BASIC XE

Space For Your Notes

Page 40 BASIC XE Reference Manual

Beginning Data Input/OQOutput Introducing Atari 1/0

Introducing Atari I/0

The Atari Personal Computers consider everything except the guts of the
computer (i.e. the RAM, ROM, and processing chips) to be external devices - for
example, the Keyboard and Screen Editor, Some of the other devices are Disk
Drive, Program Recorder (cassette), and Printer. The following is a list of the
devices, ordered according to the device specifier. For some devices the
specifier alone is needed as "filespec", while others require both the specifier and
a file name:

C: The Program Recorder - handles both Input and Output. You can use the
recorder as either an input or output device, but never as both simulta-
neously.

D1: - D8: Disk Drive(s) - handle both input and Output. Unlike C:, disk drives can
be used for input and output simultaneously. Floppy disks are organized
into a group of files, so you are required to give a file name along with the
device specifier (see your DOS manual for more information). Note: if you
use D: without a drive number, D1: is assumed.

E: Screen Editor - handles both Input and Output. The screen editor simulates a
text editor/word processor using the keyboard as input and the display (TV
or Monitor) as output. This is the editor you use when typing in a RASIC XE
program. When you specify no channel while doing 1/0, E: is used because
the 1/0 channel number defaults to 0, which is the channel BASIC XE opens
for E:.

K: Keyboard - handles Input only. This allows you access to the keyboard without
using E:.

P: Parallel Port on the 850 Module - handles OQutput only, Usually P: is used for a
parallel printer, so it has come to mean "Printer" as well as "Parallel Port".

R1: - R4: The RS-232 Serial Ports on the 850 Module - handle both Input and
Output. These devices enable the Atari system to interface to RS-232
compatible serial devices like terminals, plotters, and modems. Note: if you
use R: without a device number, R1: is assumed.

S: The Screen Display (TV or Monitor) - handles both Input and Output. This
device allows you to do either character or graphics 1I/0 on the screen
display. The cursor is used to address a screen position.

Each of these devices is used for I/O of some type, although only a few of them
can do both input and output (you wouldn't want to input data from a Printer).
Because they work differently, each device has to tell the computer how it
operates. This done through the use of a device handler. A device handler for a
given device gives information on how the computer should input and output data
for that device.

One of the sub-systems in the computer is the Central Input/Qutput (CIO) proces-
sor, It is CIO's job to find out if the device you specify exists, and then look up
1/0 information in that device's handler. This makes it easy for you, since you
don't need to know anything about given handler. To let CIO know that a device
exists (i.e., is available for I/0) youneed to, OPEN the device on one of the CIO's

BASIC XE Reference Manual Page 41

Beginning Data Input/Output OPEN

eight channels (numbered 0-7). When you want to do 1/0 involving the OPENed
device, youmust then use the channel number instead of the device name.

When you see "filespec" in the following sections, it refers simply to the device
(and file name in the case of D:) in a character string. The string may be either a
string constant, an svar, or an savar element.

If you use channel #7, it will prevent LPRINT or some of the other BASIC XE I/0

statements from being performed,

OPEN

Format: OPEN #chan, aexpl, aexp2, "filespec"
Examples: 100 OPEN #2,8,0,A$
OPEN #4,4,0,"D: INPUT. TXT"

As mentioned above, a device must be OPENed on a specific channel before it can
be accessed. This "opening" process links a specific channel to the appropriate
device handler, initializes any CIO-related control variables, and passes any
device-specific options to the device handler. The parameters for the OPEN
command are defined as follows:

chan This is the number of the channel which you want to associate with the
device filespec. Also, this is the number you use when you later want to
do I/0 involving the specified device (using INPUT, PRINT, etc.).

aexpl This is the I/0 mode you want to associate with the above channel. The
numeric codes are described in the following table:
aexpl Meaning

4 Input Only
6 Read Disk Directory Only
8 Output Only

9 Qutput Append

12 Input and Output
Note: other modes may exist for special devices or extensions to a
device,

aexp2 Device-dependent auxiliary code. See your device manual to see if it
uses this number. If not, use a zero.

filespec The device (and file name, if required) you want to be associated with
the specified channel.

Page 42 BASIC XE Reference Manual

Beginning Data Input/Output CLOSE
PRINT

CLOSE (CL.)

Format : CLOSE #chan
Examples: CLOSE #4
100 CLOSE #1

CLOSE is used to close a CIO channel which has been previously OPENed to allow
1/0 on some device. After you CLOSE a channel, you can then reOPEN it to some
other device, and thus associate that channel number with a different device.

Note: you should CLOSE all channels you have OPENed when you are finished
using them.
PRINT (PR. or ?)

Format : PRINT [#chan] [|;

]

exp...][{,

Examples: PRINT
PRINT X,Y,Z;A$
100 PRINT "The value of X is ";X
100 PRINT "Commas","cause","tabs"
100 PRINT #3,A%
100 PRINT #4;"$";HEX$(X);" is ";X

PRINT is used in either Direct or Deferred Mode to output data. In Direct Mode,
it prints whatever exp information is given. In the second example, the screen will
display the current values of X,Y,Z, and A$. In the fifth example, A$ is PRINTed
out to the device associated with channel 3.

The comma option causes tabbing to the next tab location. Several commas in a
row cause several tab jumps. To set the tab spacing caused by the use of a comma,
use SET 1,aexp (see SET for more info).

A semicolon causes the next exp to be output immediately after the preceding
exp without spacing or tabbing. Therefore, in the sixth example spaces surround
the 'is' so that it and the values of X will not butt up against each other.

If no comma or semicolon is used at the end of a PRINT statement, then a
<RETURN?> is output and the next PRINT will start on the following line.

Note: numbers smaller than 0.01 or with more than 10 significant digits will be
PRINTed in scientific notation.

BASIC XE Reference Manual Page 43

INPUT Beginning Data Input/OQutput

INPUT (1)

Format : INPUT ‘ [#chan,] | varl [,var2...]
[

"string"]

Examples: INPUT X
100 INPUT SA$(4;)
100 INPUT X,Y,2(4),B$
100 INPUT #4,A%(5,9)
100 INPUT "SS#,Name>> ",Ssnum(X),Names$(X;)

INPUT is used to input various data and store it directly into variables. The first
data element INPUTted will be stored in varl, the second in var2, and so on. If
you are INPUTting more than one arithmetic variable, the numeric data elements
may be entered on a single line if they are separated by commas, or on separate
lines, each followed by a <RETURN>. In the latter case, BASIC XE will prompt
with a double question mark to indicate that more input is needed. When
INPUTting a group of strings, each must be typed on a line by itself, or as the last
item on the line when combined with numeric input.

Note: you can make BASIC XE produce a TRAPable error instead of the double
prompt by using SET 4,aexp. Also, you can change the default question mark (?)
prompt to any character using SET 2,aexp (see SET for more info).

The fifth example above shows off one of the most powerful additions to INPUT.
If a literal string immediately follows the INPUT, that string will be used as the
prompt, thus allowing you to create prompts that are more explanatory than the
standard "?",

We strongly recommend that:
1) no more than one variable be used on each INPUT line.
2) INPUT and PRINT should not be used for disk data file access
(RGET and RPUT are suggested instead).

Bonus: as you can see from the third and fourth examples above, you can
INPUT directly in mvar elements and/or substrings. This addition (not in Atari
BASIC) can be extremely useful and make your programs very efficient.

Page 44 BASIC XE Reference Manual

Beginning Data Input/Output PUT, GET
LPRINT

PUT (PU.)
Format : PUT #chan,aexp
Fxamples: PUT #6,ASC("A")
100 PUT #0,4*12
PUT is used to output a single byte of data to an open channel. The data output is
aexp, and it is output to channel chan.

GET

Format : GET #channel, avar
Fxample: 100 GET #0, X

GET is used to input one byte of data from an open channel. This byte of
information is stored in avar.
LPRINT (LP.)

Format: LPRINT [expl[|;|exp...][];]]

’]
Fxample: LPRINT "Calculation of X squared:"
LPRINT causes BASIC XE to output data on the printer rather than on the screen,
It can be used in either Direct or Deferred Mode, and requires neither device
specifier nor OPEN or CLOSE statement.
Caution: LPRINT cannot be used successfully with most printers when a trailing
comma or semicolon is used. If advanced printing capabilities are reauired, we

recommend using PRINT # on a channel previously OPENed to the printer (P:).

Note: the semicolon and comma options are discussed in the PRINT section of this
chapter,

Note: although LPRINT may be used with USING just like PRINT, we recommend
using PRINT #x; USING instead.

BASIC XE Reference Manual Page 45

TAB Beginning Data Input/Output
f TAB

TAB
Format : TAB [#chan,] aexp
Examples: TAB #2,20
100 TAB 12

TAB outputs spaces to the device specified by chan (or the screen if chan is not
specified) up to column aexp. The first column is numbered 0.

Note: the column count is kept for each device and is reset to zero each time a
carriage return is output to that device. The count is kept in Aux6 of the JOCB
(See 0S documentation).

Note: if aexp is less than the current column count,a <RETURN> is output and
then spaces are put out up to column aexp.

f TAB

Format: TAB(aexp)
Example: PRINT #3;"columns:"TAB(20);20;TAB(30);30

The TAB function's effect is identical to that of the TAB statement (see above).
The difference is that imbedding a TAB function in a PRINT USING or PRINT can
simplify your programming task greatly. The TAB function will output sufficient
spaces so that the next item will print in the column specified (only if the
TAB(aexp) is followed by a semicolon, though).

Note: if aexp is less than the current column count, a carriage return is output and
then spaces are output up to column aexp.

Caution: the TAB function will output spaces on some device whenever it is used;
therefore, it should be used only in PRINT or PRINT USING statements.

Page 46 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numeric Formats # & *

Advanced Data Input/OQutput

The statements in this chapter deal with special applications or advanced concepts
of data 1/0. Unless you are already familiar with these or similar statements (i.e.
if you've used BASIC XL), we suggest that you play with them a little just to get a
feel for what they can and can't do.

PRINT USING

Format: PRINT [#chan|;|] USING sexp, expl [,exp2...]

PRINT USING allows you to specify a format for the data you wish to output.
sexp is the string which defines the format you wish to use, and is made up of one
or more format fields. Fach format field tells how one of the exps which follow
sexp is to be printed. The first field specifies the first exp's format, the second
field specifies the second exp's, and so on. The valid format field characters are
#&*%+8,.%!and/ (each will be explained separately in just a moment). Non-
format characters terminate a format field and are printed as they appear.

Note: the comma (,) and semicolon (;) spacing options of PRINT are overridden in
the expression list of PRINT USING, but apply after chan if it is used (ie. ')
produces a tab, and ';' produces no spacing).

Warning: sexp must contain at least one valid format field, otherwise BASIC XFE
will print sexp repeatedly as it searches for a format field.

Numeric Formats: the characters for formatting numbers are:

Blank Fill , Insert a Comma

& Zero Fill + Sign (+/-) pre/postfix

* Asterisk Fill - Sign (- only) pre/postfix
. Decimal Point $ Dollar Sign prefix

& and *:1if there are fewer digits in the output number than specified in the
format, then the digits are right justified in the field and prefixed with the proper
fill character. If there are more digits in the output number than specified in the
format, then the rightmost digit(s) of the number which fit in the field format are
displayed (see last example). The following table illustrates these capabilities and
limits (bars have been placed around the output so that you may visualize the field
boundaries):
Value Format Output
123 HedH 123
123 &&&& 0123
123 i *3:23
1234 #H#4 1234
12345 #i#4 2345

Note: if you don't want numbers truncated, you can use SET 14,1. BASIC XE will
then force a TRAPable error (#23) rather than truncate the number.

BASIC XE Reference Manual Page 47

PRINT USING Advanced Data Input/Output
Numeric Formats ., +

. (period): a period in the format field indicates that a decimal point is to be
printed at that location in the number. All digit positions in the format that
follow the decimal point are filled with digits. If the output number contains
fewer fractional digits than specified in the format, then zeroes are printed in the
extra positions. If the output number contains more fractional digits than
indicated in the format, then the output number is rounded so that there are the
specified number of fractional digits. Note: a second decimal point within a single
format is treated as a non-format character, and so terminates the format field.
Here are some examples:
Value Format Output
12.488 #ith. ## 12.49
123.4 i ## 123.40
2.35 i ™ *2.35.

, (comma): a comma in the format field indicates that a comma is to be printed at
that location in the output number. If the format specifies that a comma should be
printed at a position that is preceded only by fill characters (#,&,*), then the
appropriate fill character will be printed instead of the comma. Note: the comma
is a valid format character only to the left of the decimal point (if a decimal point
is used); when a comma appears to the right of a decimal point, it becomes a
non-format character and terminates the format field. Here are some examples:

Value Format Output
5216 4, Hi4 5,216
3 #’*ttt K ERk]

4175 #,#4#. 4,175,

+ and -: a plus sign in a format field indicates that the sign of the output number is
to be printed (+ if positive, - if negative). A minus sign indicates that a minus sign
(-) is to be printed if the output number is negative and a blank if the output
number is positive.

The signs may be fixed or floating prefixes, or fixed postfixes. When used as fixed
prefixes, the sign format character be the first character in a format field:

Value Format Output
43.7 +HH#E L EE |+ 43,70
4.7 +HEHLHE - 43.70

23.58 -&&&.&& 023.58
-23.58 -&&&.&& |-023.58

Floating signs must start in the first format position and occupy all positions up to
the decimal point. This causes the sign to be printed immediately before the first
digit rather than in a fixed location. Each sign after the first also represents a
blank-fill digit position:

Value Format Output
375+ HE +3.75
375 ===.44 3.75

-3.75 ---.#t | -3.75

Page 48 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numeric Format & String Formats % !

A trailing sign may appear only after a decimal point and as the last character in
the format field. It terminates the format and prints the appropriate sign (or
blank):

Value Format Output
43,17 FFF FFL 1F43,17+
43.17 &&&.&&- |043.17

-43.17 HE#. Hi+ 43.17-

$ (dollar sign): a dollar sign in a format field indicates that a $ is to be used as a
fixed or floating prefix to the output number. A fixed dollar sign must be either
the first or second character in the format field (second only if the first is a + or -
used as a fixed sign prefix):

Value Format Output
34,2 SHE. 4 $34.20[
34.2 +SHHLH# +$34.20
34.2 -SHH. #H $34.20

-34.2 +SHHE, H -$ 34.20]

Floating dollar signs must start as either the first or second (second for reasons
outlined above) character in the format field and continue to the decimal point.
Each dollar sign after the first also represents a blank-fill digit position:

Value Format Output
34.2 $3885 . ## $34.20]
34,2 +35585. #HH + $34.20]

-72692.41 $385, 555, ##+ $72,692.4]-|
Note: There may be only one floating character per format field.
Warning: using +, - or $ in other than proper positions will give strange results.

String Formats: the format characters for strings are as follows:

% indicates the string is to be right justified.
! indicates the string is to be left justified.

If there are more characters in the string than in the format field, then the string
is truncated. Following are examples of string formatting:

String Format Output
"BASIC XE" %%¥%%%% | BASIC XE
"BASIC XE" 1trrrient BASIC XE
"RASIC XE" %%%%% \BASIC
"BASIC XE" !!!t! IHASIC

BASIC XE Reference Manual Page 49

PRINT USING - Embedding Format / Advanced Data Input/Output
NORMAL/INVERSE

Embedding Characters: the slash character (/) does not terminate the format field
but will cause the next character to be printed as is, thus allowing you to insert
non-format characters in the middle of a format field, as in the following
examples:

Value Format Output
4084463099 (H##/)HHR/-#H#4 (4085446—3099(
"oss" %/ %/ %/ . 0.5.5.]|

Bonus: if there are more expressions in the list than there are format fields, the
format fields will be reused. For example,

PRINT USING "###4",25,19,7
will output

| 25 19 7|
NORMAL /INVERSE
Format : NORMAL
INVERSE
Exemples: NORMAL
100 NORMAL

150 INVERSE

NORMAL and INVERSE allow you to change the video presentation of all PRINTSs,
LPRINTs, and PRINT USINGs. Anything you display after a NORMAL will be
output just as it appears in your program, while anything you display after using
INYERSE will be converted to inverse video. In this case, characters that were
previously in inverse video will appear in normal video.

Note: BASIC XE returns to NORMAL display whenever youreturn to Direct Mode
or reRUN a program from within itself.

Page 50 BASIC XE Reference Manual

Advanced Data Input/Output BPUT
BGET

BPUT
Format: BPUT #chan, aexpl, aexp2 [,bank]

BPUT outputs a block of data to the device OPENed on channel chan. The block
of data starts at address aexpl, and is aexp2 bytes long. You may also select an
optional bank number if you're in EXTENDed mode (see EXTEND for more info).

Note: aexpl the address may be a memory address, or the address of a string
(found using ADR).

The following example writes out an entire mode 8 graphics screen directly from
screen memory:

180 Graphics 8:addr=Dpeek ($58)

11@ Print "Filling Screen..."

120 For Sbyte=@ To (48¥%168)-1:Rew *fill screen"
138 Poke Addr+sbyte,Randoni256)

140 Next Shyte

150 Print "Done Filling., Now BPUTting..."

160 Close f®1:0pen #1,8,0,"D:NODES.SCR":Ren "ready to BPUT™
170 Bput %1,Addr,40%160

180 Close #1

198 Print "Finished BPUTting"

200 End

Note: nothing is written to the file which indicates the length of the data written,
We suggest that you write fixed-length data to make the rereading process
simpler.

BGET
Format: BGET #chan, aexpl, aexp2 [,bank]

BGET gets aexp2 bytes from the device OPENed on channel chan, and stores them
starting at address aexpl. As with BPUT, aexpl may be the address of a string; in
this case BGET does not change the length of the string - this is your
responsibility. You may also select an optional bank number if you're in
EXTENDed mode (see EXTEND for more info).

The following example will read in an entire mode 8 graphics screen directly into
screen memory:

180 Graphics 8:Addr=ppeek($58)

118 Close #1:0pen #1,4,8,"D:NODEB.SCR":Ren “ready to BGET"
120 Print "Now BGETting.,."

130 Bget #1,Addr,40%168

146 Close 84

158 Print “Finished BGETting"

168 End

Note: no error checking is done on the address or length so care must be taken
when using this statement, lest you wipe out part of DOS or your BASIC XE
program.

BASIC XE Reference Manual Page 51

RPUT Advanced Data Input/Output

RPUT
Format: RPUT #chan, exp [,exp...]

RPUT allows you to output fixed-length records to the device OPENed on channel
chan. Each exp constitutes one field element in the record. An arithmetic field
consists of one byte which indicates an arithmetic data type, and 6 BCD floating
point bytes of data. A string field consists of one byte which indicates a string
data type, 2 bytes of LEN length, 2 bytes of DIM length, and then DIM length bytes
of data. All this really means is that you can't INPUT data which has been
RPUTted, since more than just the data is RPUT.

The following example RPUTs 20 records of the form "Name", "Address", "City",
"State", Zip, Phone:

160 Pin IanesS(zo,IO),addr55(10,30),CiiiESS(ID,ZO),5101055(20,2)
110 DPin Zips(28),Phones(28)

128 Close #1:0pen #1,6,0,"D:FRIENDS.DAT"

130 For Recnum=1i To 26

140 Input "Mawe)) ", Hames$ (Recnum;)

158 Input "Address)) ",addrs$(Recnum;)

1680 Input "City)) ",cities$ (Recnun;)

176 Input "State)) ",5tates$ (Recnun;)

188 Input *“Zip)) ",Zips (Recnun)

198 Input "Phone)) '',Phones (Recnunl

ri:1:] Print :Print " g 4

21@ Print NamesS$(Recnum;):Print Addrs$(Recnun;)

220 Print CitiesS(Recnum;l;™, “;States$(Recnum;);* *;Zips(Recnum)
238 Print Using ' (81817 153882/ - 1818, Phone s (Rec nund

248 Print :Input "HIEEINCFUONMGZADIEN “,AnsS$

250 If (AnsS="Y") Or (AnsS5=''y") :Rew "do RPUT™

260 Rput #1,Nanes$ (Recnum;),Addrss$ (Recnun;),Citiess$ (Recnun;)
276 Rput #1,3tates$ (Recnur;),Zips(Recnun) ,Phones(Recnund

280 Else :Print "Re-enter record":Goto 148

298 Endif

300 Next Recnum
318 Close #4:Print :Print "All Done"
328 End

Page 52 BASIC XE Reference Manual

Advanced Data Input/Output RGET

RGET

Format: RGET #chan, var [,var...]

RGET allows you to retrieve fixed-length records from the device OPENed on
channel chan, and assign the values to string or arithmetic variables. Note: the
input data and the variable into which the data is stored must be of the same type
(i.e. they must both be string or both be arithmetic).

Note: when the data type is string, then the DIMensioned length of the data string
must be equal to the DIMensioned length of the svar. Once the data string has
been assigned to the svar, RGET sets the LEN length of the svar to the
actual length of the inputted data string (not the DIM length of the data string).

Warning: you may not RGET into mvars or savars., You must RGET the field into a
temporary avar or svar, and then transfer into the subscripted variable.

The following example RGETs 20 records of the form "Name", " Address", " City",
"State", Zip, Phone, and stores them in string and arithmetic arrays, dependent
upon the data type of the field:

100 Din Mames$(20,30),Aaddrs$(20,308) ,Cities$(28,20),5tates5¢20,2)
118 Din Tnawe$(30),Taddr$(36),Tcity$(20), Tstated(2)

128 Dim Zips(26),Phones (20)

136 Close #1:0pen #1,4,08,"D:FRIENDS.DAT"

140 For Recnum=i To 26

158 Rget #11,Tnawne$,Taddr$,Tcity$,Tstate$, Tzip, Tphone

160 Nanes$ (Recnunid=Tnane$:Addrs$ (Recnun;I=Taddr$:Citiess (Recnun;d=Tcity$

176 States$(Recnum;)=Tstate$:Zips(Recnur)=Tzip:Phones (Recnun)=Tphone
180 Wext Recnun
196 Close #1i:Print :Print "Got File"
200 Ren "Wow that we have records, let's show ther"
218 Input "Record to View? “,Recnum
220 If Recnun{)8:If Recnunr)2@ Then 306
230 Gosub JIi0
240 Else :Rem "show all records"
250 For Recnuw=1 To 20
260 Gosub 310
276 Next Recnun
280 Endif
298 Goto 210
3@ End
310 Print Mames$ (Recnun;) :Print Addrs$(Recnun;)
320 Print Cities$(Recnum;);*, "“;States$(Recnun;d ;" *;Zips(Recnum)
gig :r:nt Using ‘' (2588887) 338088/ - 03888888'" , Phones (Recnund :Print
eturn

BASIC XE Reference Manual Page 53

BSAVE Advanced Data Input/Qutput
BLOAD

BSAVE

Format: BSAVE aexpl,aexp2,"filespec"
Example: BSAVE $680,$6FF,"D:PAGEFLIP.BIN"

BSAVE allows you to store a binary image in standard Atari DOS LOAD format
(with header) so that you can later BLOAD it directly into the right place.
aexpl is the starting address of the region of memory you want to save, and
aexp2 is the ending address of the region. A total of aexp2-aexpl+] bytes of
binary data are stored.

Technical Note: BSAVE saves the memory image as a single segment, with a single
header. No RUN or INIT vector is appended.

BLOAD

Format: BLOAD "filespec"
Fxample: BLOAD "D:PAGEFLIP.BIN"

BLOAD is the complementary statement to BSAVE because it allows you to load a
standard Atari DOS LOAD format binary file. It can also be used to load
USR routines you have written using MA C/65 (or some other inferior assembler).

Warning: BLOAD performs no checks of the addresses specified in the segment
header(s). You can easily wipe out huge and important parts of memory with this
statement!

Technical Note: BLOAD will load binary files that are made up of any number of
segments. It will load but ignore RUN and/or INIT vectors.

Bonus: if your binary file has a RUN vector, you can execute it via
SET 8,0:A=USR(DPEEK($2E0)).

Page 54 BASIC XE Reference Manual

Advanced Data Input/Output NOTE , POINT
STATUS

NOTE (NO.)

Format : NOTE #chan, avarl, avar2
Example: 100 NOTE #1,X,Y

NOTE stores the current disk sector number in avarl and the current byte offset
within that sector in avar2. This is the current read or write position in the
specified file where the next byte to be read or written is located.

POINT (P.)

Format : POINT #chan, avarl, avar2
Example: 100 POINT #2, A, B

POINT sets the current disk sector to avarl, and the current byte number within
that sector to avar2. Essentially, it moves a software-controlled pointer to the
specified location in the file. This gives the user "random" access to the data
stored on a disk file. The POINT and NOTE commands are discussed in more detail
in your DOS Manual, '

STATUS (ST.)

Format : STATUS #chan, avar
Fxample: 350 STATUS #1,7

STATUS calls the status routine for the device OPENed on channel chan, and
stores the value returned in avar. This can be useful when dealing with devices
that produce special status values (e.g., R:).

Warning: if no device is currently OPEN on chan, STATUS will still try to do
something. What it will do depends on the last thing that was done on channel
chan, and can produce disastrous results. We strongly recommend using XIO 13 on
channels which are not OPEN.

BASIC XE Reference Manual Page 55

X10 Advanced Data Input/Output

XI10 (X.)

Format: XIO cmdno, #chan, aexpl, aexp2, "filespec"
Example: XIO 18,#6, 0, 0, "S:"

XIO is a general input/output statement that allows you to access the special
capabilities of the device filespec. cmdno Is an aexp, and specifies the function
you wish the device to perform. aexpl and aexp2 are put in the auxl and aux2
bytes of channel chan, and are dependent upon the function. A list of useful
cmdnos follows:

cmdno operation example

3 Open Use OPEN instead

5 Get Text Use INPUT instead

7 Get Char Use GET or BGET instead
9 Put Text Use PRINT instead

11 Put Char Use PUT or BPUT instead
12 Close Use CLOSE instead

13 Status XI0 13,#6,0,0,"R4:"

17 Draw Line Use DRAWTO instead

18 Fill X10 18,#6,0,0,"S:"

32 Rename File Use RENAME instead

33 Delete File Use ERASE instead

35 Lock File Use PROTECT instead
36 Unlock File Use UNPROTECT instead
37 Disk Point Use POINT instead

38 Disk Note Use NOTE instead

253 2.5 Format XIO 253,#1,$22,0,"D2:"
254 Disk Format XIO 254,#1,0,0,"D2:"

Note: we strongly recommend that you use only emdno's 13, 18, 253, and 254, since
BASIC XE has statements that perform all the others.

Page 56 BASIC XE Reference Manual

Managing Disk Files DIR , PROTECT
UNPROTECT

Managing Disk Files

The statements in this chapter allow you to perform DOS-type commands without
ever leaving BASIC XE. The statements are DIR, PROTECT, UNPROTECT,
RENAME, and ERASE.

Note: in the examples in this chapter, you will sometimes see the wildcard
characters * and ? in the filespec. For information on the use of these, see your
DOS manual.

DIR
Format : DIR ["filespec"]
Examples: 100 DIR "D:*.com"
DIR FILES$

DIR "D2:TEST? .B*"

The DIR command shows a list of the disk files which match filespec, and is similar
to the DOS XL DIR command. If no filespec is given all files on D1: are displayed.
The first example will display all files on D1: with the "COM" extension. The
second example shows a string variable being used as filespec. This is legal, but
the string variable must contain a valid filespec, otherwise an error will occur.
The third example will display all files on the disk in drive 2 which match
TEST?.B*.

Note: DIR must be used as the last (or only) command on a progam line.

PROTECT
Format : PROTECT "filespec"
Examples: PROTECT "D:*,Com"
100 PROTECT "D2:FILE.BXE"

PROTECT allows you to protect your disk files without going to DOS, and is very
similar to the DOS XL PR O command.

Note: Atari DOS uses the terms 'LOCK' and 'UNLOCK' instead of PROTECT and
UNPROTECT. They're just different names for the same idea.

UNPROTECT (UNP.)

Format : UNPROTECT "filespec"
Examples: 100 UNPROTECT "D:DATA.001"
UNP. "D2:*.*"

The UNPROTECT statement allows you to unprotect disk files which have been
protected using either the BASIC XE PROTECT statement or the DOS XL PRO
command, and is similar to the DOS XL command UNProtect,

BASIC XE Reference Manual Page 57

RENAME Managing Disk Files
ERASE

RENAME

Format: RENAME "filespec,filename"
Example: RENAME "D2:O0LDNAME. EXT ,NEWNAME. EXT"

RENAME allows you to rename disk files directly from BASIC XE. Note: the
comma shown between filespec and filename is required.

Caution: the new filename cannot include a device specifier (Dn:). Also, we
strongly suggest that you do not use wildcards when RENAMEing.

ERASE

Format : ERASE filespec
Examples: ERASE "D:* . BAK"
ERASE "D2:TEST?.SAV"

ERASE will erase any unprotected files which match the given filespec. The first
example above would erase all files on the disk in drive 1 with the extension
"BAK". The second example would erase all files matching TEST?.SAV on the disk
in drive 2. This command is similar to DOS XL's ERA.

Page 58 BASIC XE Reference Manual

Looping and Jumping Statements FOR/STEP/NEXT

Looping and Jumping Statements

The statements discussed in this chapter allow you to have repetition and iteration
in your BASIC XE programs without a lot of trouble, The looping statements are
FOR and WHILE, and the jumping statement is GOTO. The POP statement is also
included because it directly affects the execution of the other three.

FOR / STEP / NEXT

Format: FOR avar=aexpl TO aexp? [STEP aexp3l]
[statements]
NEXT avar

The FOR statement is used to repeat a group of statements a specified number of
times, It does this by initializing the loop variable (avar) to the value aexpl. Each
time the NEXT avar statement is encountered, avar is incremented by aexp3 if the
STEP option is used. If this option is not used, avar is incremented by 1. When
avar becomes greater than aexp2, the loop stops executing, and the program
proceeds to the statement immediately following the NEXT avar. You can control
whether or not a FOR loop will execute at least once (a la Atari BASIC) using
SET 3,aexp.

FOR loops can be nested (one FOR loop within another). In this case, the
innermost loop is completed before returning to the outer loop. The following
program is an example of nesting (notice how LIST indents loops to show the
statements within a loop):

16 For X=1 To 3

28 Print "CHEGTSH iR

I8 For Y=1 To 5 Step 2

40 Print " Y Loop: ";¥;
58 Hext ¥

60 Print

78 MHext o

86 End

The outer loop will complete three passes (X=1 to 3). However, before this first
loop reaches its NEXT X statement, the program gives control to the inner loop.
Note that the NEXT statement for the inner loop must precede the
NEXT statement for the outer loop. In the example, the inner loop's number of
passes is determined by the STEP statement (STEP 2). Using this data, the
computer must complete three passes through the inner loop before the inner loop
counter (Y) becomes greater than 5. The following is the output of this program

when it is RUN:

KELoop:: JBY

Y Loopt 1 Y Loop: 3 VY Loop: §
2

Y Loop: 1 Y Loop: 3 VY Loop: 5
3

Y Loop: 4 Y Loop: ¥ Y Loop: S

BASIC XE Reference Manual Page 59

WHILE/ENDWHILE Looping and Jumping Statements

WHILE / ENDWHILE

Format: WHILE aexp
[statements]
ENDWHILE

WHILE allows you a looping statement which continues execution conditionally.
So long as aexp is non-zero (it can be either positive or negative), all statements
between WHILE and ENDWHILE will be executed. Before each pass through the
statements in the loop, aexp is evaluated to determine whether loop execution
should continue or not. For example, WHILE 1 will execute forever, and
WHILE 0 will never execute. The following program is an example of the
WHILE loop:

180 Rmax=S:Cmax=8:Currow=68:Curcol=8:Found=0:Target=0
185 Dinm Matrix(RWmax,Crax)

110 Khile Currow{Rmax And (Not Found)

128 Curcol=8

138 While Curcol{Crax And ¢ Hot Found)

148 If Matrix(Currow,Curcol)=Target Then Found=1
158 Curcol=Curcol+i

i6e Endwvhile

178 cCurrow=Currowti

188 Endwhile

190 If Found:Print “Found '';Target;" at “;

200 Print “Matrix(“;Currow-1;",';Curcol-1;")"

218 Else :Print Target;" not found”

220 Endif

Page 60 BASIC XE Reference Manual

Looping and Jumping Statements GOTO

GOTO (G.)
Format: GOTO lineno

The GOTO command is used to jump unconditionally to another part of the program
by specifying a target line number (lineno). Because there is no way to return
from a GOTO, the statements which follow it will never be executed, unless of
course another GOTO jumps back to them. The following example program shows
several uses of GOTO:

180 Tryagain=ii8

110 Input “Give me a number from 1 to 9 > ",Lucky
120 If Lucky{i Then 11e

130 If Lucky?9 Then Goto ii@

140 If Lucky{dIntlLucky) Then Goto Tryagain
150 Print Print

160 Goto 200+Luckyiie

200 Ren 44 CHOOSE A WORD ¥4t

216 Lucky$=""Fitch":Goto 360

220 Lucky$='Pippin":Goto 388

230 Lucky$="Mandrill":Goto 300

248 Lucky$="Zeitgeist:Goto 300

258 Lucky$="Zloty':Goto 360

268 Lucky$="Freshet':Goto 300

278 Lucky$="Crosier*:6oto 300

280 Lucky$="Broughan":Goto 300

298 Lucky$="fAbattoir'':Goto 300

388 Print " Your lucky crossword puzzle word is:"
310 Tab (3IS-Len(Lucky$))/2

320 Inverse :Print Lucky$:Norwnal :Print

338 Goto Tryagain

Note: any GOTO statement that jumps to a preceding line may result in an endless
loop.

Note: using anything other than a numeric constant for lineno will make
renumbering using RENUM difficult. However, readability may be markedly
improved.

BASIC XE Reference Manual Page 61

POP Looping and Jumping Statements

Format : POP

To understand what POP does, we need to take a little journey inside RASIC XTF to
find out more about how loops work. When BASIC XE seesa FOR, WHILE, or
GOSUB, it saves away its current position in the program. That way, when it
reaches the NEXT, ENDWHILE, or RETURN, it will know where to go back to.
Also, LOCAL saves the previous value of an avsr when you make it private so that
it can later be restored. The place where BASIC XE saves these things is called
the program stack, and is really just a list. Putting something on the stack is
called 'pushing', and taking something off is called 'popping', hence the command
POP suggests that it takes something off the stack. This is exactly what it does,
and is very useful when you want

1) to jump out of a loop before it has executed its specified number of times,

2) to get out of a subroutine (GOSUB) which does not give control back to the
main program through the use of a RETURN, or

3) to restore the previous values of LOCAL avars, thus ending a
LOCAL region without an EXIT.

Warning: if you POP too many or too few items off the stack it will cause an error
(13, 16, or 28, dependent upon what you left at the top of the stack).

The following examples illustrate these uses of POP:

18 For Iz0 To 9
20 Print I;
30 Local X
48 I=Randon(16,99)
S8 - Print " : “;I;

68 Pop
78 Print * ; ;I
80 Wext I

98 Ren lines 20 and 30 may be swapped

180 Print "At line i@6"
116 Gosub 200

120 Print "Aat line 120"
130 End

196 Ren

200 Print * At line 260"
218 Gosub 386

228 Print ** At line 228"

388 Print At line 388"
318 For I=1 TJo §

320 Print " At line 328*

330 I¢ I=3 and Flag Then Pop :Pop :Return
340 Wext I

350 Print ™ At line 350"

360 Flag=1

376 Return

Page 62 BASIC XE Reference Manual

Conditional Statements IF/THEN

Conditional Statements

The statements discussed in this chapter allow you to execute parts of your
program only if the conditions you specify have been met. The conditional
statements are IF/THEN, IF/ELSE/ENDIF, and ON.

IF / THEN

Format: IF aexp THEN |lineno
|statement[:statement...]

The IF/THEN conditional is used when you want to execute a group of statements
only if certain conditions are met. These conditions may be either arithmetic or
logical. If the aexp following the IF is true (non-zero), the program executes the
THEN part of the statement. If, however, aexp is false (zero), the rest of the
statement is ignored and program control passes to the next numbered line. When
THEN is followed by a line number (lineno), execution continues at that program
line if aexp is true. Note: lineno must be a constant (not an expression).

Several IF/THEN conditionals may be nested on the same line. In the example,
180 If K=S Then R=9:If Y=3 Then Goto 200

the statement R=9 will be executed if X=5, while the statement GOTO 200 will be
executed only if X=5 and Y=3.

The following program demonstrates the IF/THEN conditional:

1080 Graphics O0:Print “IF DEMO™

118 Input “Enter Value 1..,3)) ",A

128 If a=1 Then Print “One’

130 If A=2 Then Print "“Two'

140 If A=3 Then Print “Three"

150 If a1 Or A>3 Then Print “BUTEIFTEEYDE"
160 Goto 118

176 End

BASIC XE Reference Manual Page 63

IF/ELSE/ENDIF Conditional Statements

IF / ELSE / ENDIF

Format: IF aexp
[statements]
[ELSE
[statements]]
ENDIF

BASIC XE makes available an exceptionally powerful conditional capability via
IF / ELSE / ENDIF. If the expression aexp is true (non-zero) then all the
statements between aexp and ELSE will be executed, while the statements
between ELSE and ENDIF will be skipped. If aexp is false (zero), then the
statements between aexp and ELSE will be skipped, and those between ELSE and
ENDIF will be executed. If ELSE is not used, this conditional acts just like a
multi-line IF/THEN with IF and ENDIF as delimiters.

Caution: the keyword THEN is not part of the syntax of this conditional.

The following program illustrates IF / ELSE / ENDIF:

180 If 142
110 Print "This ";
120 If 2)3

138 Print “computer ";
148 If 344

158 Print "is '';

i68 Else

170 Print “broken!"
188 Endi f

198 Else

2080 Print “progran '';
210 If 425 .

220 Print "is a'“;
230 It 546

240 Print "boo-boo*
2508 Endi f

268 Else

270 Print “works *;
280 If 6>7

290 Print “poorly."
308 Else

318 Print '‘great!"™
320 Endif

338 Endif

348 Endif

350 Else

368 Print "“Kablooey!!!fiv
378 Endif

Page 64 BASIC XE Reference Manual

Conditional Statements ON

ON

Format: ON aexp |GOTO

GOSUB

lineno1l,lineno2...]

Note: GOSUB and GOTO may not be abbreviated when used in conjunction with
ON.

The ON statement allows conditional jumps and subroutine calls. The condition is
determined by aexp. If it is negative, an error results. If it is non-negative,
aexp is rounded to the nearest integer, and program control is channelled
according to the following table:

value Control goes to

0 Statement after ON
1 linenol

2 lineno2

N 1inenoN
>N Statement after ON

"N" is the last line number in the list of lineno's following the GOTO or GOSUB.
When ON/GOSUB is used, control returns to the statement following the
ON/GOSUB after the subroutine RETURNs.

The following program demonstrates the ON statement, both with GOTO and
GOSUB:

1080 Graphics 2:Print #6; ' (EONAELI FILE RUNNER"
110 Print %86

1208 Print #6;°f]l run basic xe file":Print #6
138 Print 86;"F disk directory":Print 86

140 Print %6;"0 quit™

150 Input “Your Choice? *,Pick

160 On ((Pick>3) Or (Pick=0)) Goto 158

178 If Pick=3 Then Graphics 0:End

188 On Pick Gosub 208,300

198 On Pick Goto 156,100

280 Trap 280

210 Input “File Nawe? ",F$

220 If Find(F5,":*,0)=8:T$="D:",F$

239 Else 11$=F$

240 Endif

258 If Find(TS,".BXE",0)=0 Then T$=TS,".BHE"
260 Print "Runmng T8, .. tRUn TS

270 Retu
280 'II‘IP Itl’l‘int » FANEEETS 82 Err (8)
298 Return

388 Graphics ®:Print *All Files with '.BHE' Extender:"
31@ Trap 368

328 Print 1Dir ''D:¥,BHE"

338 Print :Print "Press for wenu"

340 I¢ Peek($dO1¢)&1 Then 340

350 Return

368 Trap @

370 If Err(e)<{>136 Then Print * F¥ZAUBENNTH #";Err ()
388 Cont

BASIC XE Reference Manual Page 65

Space For Your Notes Conditional Statements

Space For Your Notes

Page 66 BASIC XE Reference Manual

Handling Errors TRAP
ERR

Handling Errors

The statements and function in this chapter allow you to detect and resolve
run-time errors without causing program execution to halt. Included are the
TRAP statement, the ERR function, and a discussion of the error handling
applications of CONT and STOP.

TRAP (T.)

Format: TRAP lineno
Example: 100 TRAP 2000

The TRAP statement is used to direct the program to a specified line number if an
error is detected. Without a TRAP the program stops executing when an error is
encountered and displays an error message on the screen.

TRAP works for any error that may occur after it (the TRAP statement) has been
executed, but once an error has been detected and trapped, it is necessary to reset
the error trapping with another TRAP statement. This resetting TRAP should be
done at the beginning of the error handling routine, to insure that the TRAP is
reset after each error.

To find out the error number and the line number on which the error occured, use
ERR, as described in the following section.

TRAP may be disabled by executing a TRAP statement with an lineno value of 0 or
greater than 32767.

Examples of TRAP may be found in the program on the following page.

f ERR
Format: ERR(aexp)

This function allows you to find out the error number and line on which the error
occurred when you are writing your own error trapping routines. Using an aexp of
0 will return the error number of the last run-time error, and an aexp of 1 will
return the program line on which the error occured. The results of using other
values of aexp are undefined.

Examples of ERR may be found in the program on the following page.

BASIC XE Reference Manual Page 67

A Program Example Using TRAP and ERR Handling Frrors
Using STOP and CONT in Error Handling

A Program Example Using TRAP and ERR

100 beg

118 Print "Angle Sine CoSecant®

128 For I=8 To 188 Step 1%

130 Print Using " 8, L ",I,5in(Id,

148 Trap 288

158 Print Using ‘'titses, e, 1/5intId
160 Next I

178 End

180 Renm we get to line 200 if

198 Rem S5in(I) is equal to zero!

288 Print "undefined"

218 Goto Errci)+ie

Using STOP & CONT in Error Handling

CONT can be very useful in error handling because you need not fool around with
line numbers to continue program execution. In the above example, execution
continues on the line following the error through the use of ERR(1) and a GOTO.
Jf CONT is used instead, line 210 becomes much simpler:

2106 cont

The use of STOP in error handling is limited but very useful. In fact, it is not
error handling at all; it is error creation. When you are developing a program, you
can put STOPs where the program should never see them. If you get a "Stopped at
lineno", then you know you're doing something wrong.

Page 68 BASIC XE Reference Manual

Handling Strings ASC , CHRS$
LEN

Handling Strings
This chapter discusses the functions in BASIC XE that are designed to make
manipulating string data quick and easy.
f ASC

Format: ASC(sexp)
Example: 100 A=ASC(AS$)

ASC returns the ATASCII numeric value of the first character in sexp. If A$=
"ABC", then ASC(A$) returns 65, and ASC(A$(2)) returns 66.

Note: Appendix A contains a table of ATASCII codes and characters.

f CHR$

Format: CHR$ (aexp)
Examples: PRINT CHR$(65)
100 A$=CHR$(65)

CHR$ returns the character (in string format) represented by the ATASCII
numeric code aexp. Only one character is returned. In the above examples, the
letter A is returned. Using the ASC and CHR$ functions, the following program
prints the upper case and lower case letters of the alphabet:

10 For C=0 To 2

S
20 Print Chrsé(asc("a"3+c),Chrétasc(**a')+C)
30 Mext C

Note: there may be only one STR$ or CHR$ in a logical comparison because
BASIC XE uses a single buffer to create the temporary string which both of these
functions use (e.g., IF CHR$(A)=CHR$(B)... is always true, whether A and R are
equal or not.

f LEN
Format: LEN(sexp)
The LEN function returns the character length of sexp. This information may then
be printed or used later in a program. The length of a string variable is simply the

element number of the last character currently in the string. Strings have a length
of 0 until characters have been stored in them.

BASIC XE Reference Manual Page 69

FIND Handling Strings
ADR

£ FIND

Format: FIND(sexpl, sexp2, aexp)
Example: PRINT FIND("ABCDXXXABC", "RC",N)

FIND is an efficient, speedy way of determining whether any given substring is in
any given master string. FIND will search sexpl, starting at position aexp+1, for
the substring sexp2. If sexp2 is found, the function returns the position where it
was found, relative to the beginning of sexpl. If sexp2 is not found, a 0 is
returned.

In the example above, the following values would be PRINTed:
2if N=0or1
9 if N>=2 and N<9
0 if N>=9

The following example shows an easy way to have a vector dependent upon a menu
choice:

18 Input "{@hange, ase, or [Mist? *,A$§
280 On Find(''CEL",A%(41,1),0) Goto 100,280,360
3@ Goto 18

This example illustrates how changes to aexp can affect the results of FIND:

i@ Imput A string, please - “,A$%

20 For S5t=8 Vo Lenta$)-2

38 F=Find(as$," A", 5t) +1

40 If F=1 Then Print *“Neither 'AB®' nor °'AC' were found':End

56 If A$CF,F)="B" Then Print "“Found 'AB' at pPos. ®"';F-1:51=5t+1

gg " I: gi(F,F):"C" Then Print “Found 'AC®' at pos. #';F-1:5t=S5t#1
ex

f ADR
Format : ADR(sexp)
FExamples: ADR(A$)
ADR(B$(5;))

ADR returns the memory address of the string sexp. Knowing the address enables
you to use it in USR routines, BGET, BPUT, etc.

Warning: if you are in EXTENDed mode, ADR("string") returns an improper value
because the string constant is copied out of the banked program memory into a
temporary area. Because it's within a single statement,

J=lisr(Aadr(“H.L. in char string"))

works, but

T=Adr{"H.L. in char string™) :J=Usr(m

won't because it's two statements. If you use ADR("string") as in the first case
only, you can SET 15,1 so that BASIC XE won't force an error.

Page 70 BASIC XE Reference Manual

Handling Strings LEFT$, MID$
RIGHTS$

f LEFT$

Format : LEFT$ (sexp, aexp)
Examples: 10 A$=LEFT$("ABCDE",3)
20 PRINT LEFT$("ABCD",5)

The LEFT$ function returns the leftmost aexp characters of the string sexp. If
aexp is greater than the number of characters in sexp, no error occurs and the
entire string sexp is returned.

In the first example, A$ is equated to "ABC", and in the second example, the
entire string "ABCD" is printed.

f MID$

Format: MID$(sexp,aexpl,aexp2)
Example: A$=MID$("ABCDEFG",2,4)

MID$ allows you to get a substring from the middle of another string., The sub-
string retrieved starts at the ae:vq:;lt character of sexp, and is aexp2 characters
long. If aexpl equals 0 an error occurs (since there is no 0 character in a
string); if aexpl is greater than the LEN length of sexp, no error occurs (and no
characters are returned). aexp2 may be any positive integer, but if its value
makes the substring go beyond the LEN length of sexp, then the substring returned
ends at the end of sexp.

In the above example, A$ is equated to "BCDE".

f RIGHT$

Format: RIGHT$(sexp,aexp)
Fxample: A$=RIGHT$("123456",4)

The RIGHT$ function returns the rightmost aexp characters of sexp. If aexp Is
greater than the number of characters in sexp, then the entire string sexp is

returned.

In the above example, A¢ is equated to "3456".

BASIC XE Reference Manual Page 71

VAL, STRS$ Handling Strings
HEX$

f VAL

Format: VAL(sexp)
Example: 100 A=VAL(A$)

VAL returns the numeric value represented by a string, providing that the string is
indeed a string representation of a number (i.e. is a digit string). Using this
function, the computer can perform arithmetic operations on strings as shown in
the following example program:

18 B$="180080"

20 B=3qr(val(B$))
38 Print “The Square Root of *“;BS$;" is ';8

Note: VAL does not permit the use of an sexp that does not start with a digit (i.e.,
that cannot be interpreted as a number). It can, however, interpret floating point
numbers (e.g.,, VAL("1E5") would return the number 100,000). Also, non-numeric
characters following a valid digit string will be ignored (e.g.,
VAL("100ABC") returns 100).

Note: VAL. will convert hex digit strings if they begin with a "$". (You can
disallow this via SET 13,0).
f STR$

Format: STR(aexp)
Example: A$=STR$(650)

STR$ returns the string form of aexp. The above example would return the actual
number 650, but as the string "650".

Warning: may be only one STR$ or only one CHR$ in a logical comparison. See
CHR$ for more info.
f HEX$
Format : HEX$ (aexp)
Examples: PRINT HEX$(5000)
PRINT "$";RIGHT$(HEX$(32),2)

The HEX$ function will convert aexp to a four digit hexadecimal number in string
format (the second example shows how to get a two digit hex number).

Note: no dollar sign ($) is placed in front of the hex digit string.

Page 72 BASIC XE Reference Manual

Using the Game Controllers PADDLE, PTRIG
PEN, STICK

Using the Game Controllers

The functions discussed in this chapter allow you to access the paddle, joystick,
and light pen easily and quickly.

f PADDLE

Format: PADDLE(aexp)
Example: PRINT PADDLE(3)

The PADDLE function returns the current value of the paddle in port aexp (0-3).
The value returned will be between 1 and 228, inclusive, with the value increasing
as the paddle knob is turned counterclockwise.

f PTRIG

Format: PTRIG(aexp)
Example: 100 IF PTRIG(1)=0 THEN PRINT "Missile Fired!"

PTRIG returns a 0 if the trigger button of the paddle in port aexp (0-3) is pressed.
Otherwise, it returns a value of 1.

f PEN

Format: PEN(aexp)
Example: PRINT "light pen at ";PEN(0);",";PEN(1)

The PEN function simply reads the ATARI light pen registers and returns their
contents. If aexp is 0, the horizontal position is returned; if aexp is 1, the vertical
position is returned.

f STICK

Format: STICK(aexp)
Example: 100 PRINT STICK(1)

The STICK function returns the position value of the joystick in port aexp (0-1), as
defined in the following diagram:

i4
10 6

11 7

13

BASIC XE Reference Manual Page 73

HSTICK , VSTICK Using the Game Controllers
STRIG

f HSTICK
Format: HSTICK(aexp)

The HSTICK function returns an easily usable code for horizontal movement of a
given joystick. aexp is simply the number of the joystick port (0-1), and the values
returned (and their meanings) are as follows:
-1 if the joystick is pushed left
0 if the joystick is centered
+1 if the joystick is pushed right

Here is an example of HSTICK in use:

10 Let Dir=Hstick(®)

28 If Dir=-1 Then Print "§¢ Left"
38 If Dir=@ Then Print “e Stopped"
48 If Pir=1 Then Print “§2 Right"
$0 Goto 10

f VSTICK
Format: VSTICK(aexp)

The VSTICK function returns an easily usable code for vertical movement of a
given joystick. aexp is simply the number of the joystick port (0-1), and the values
returned (and their meanings) are as follows:

-1 if the joystick is pushed down

0 if the joystick is centered

+1 if the joystick is pushed up

Here is an example of VSTICK in use:

18 Let Dir=vUstick(®)

20 If Dir=-1 Then Print "kJ Down"
38 If Pir=@ Then Print “e Stopped"
48 If Pir=1 Then Print “k¢ up"

50 Goto 1@

f STRIG

Format: STRIG(aexp)
Example: 100 IF STRIG(1)=0 THEN PRINT "Fire Torpedo"

The STRIG function works the same as the PTRIG function, except that it is used
with the joysticks instead of the paddles. aexp specifies the joystick port (0-1).

Page 74 BASIC XE Reference Manual

Graphics Introducing Atari Graphics
Mode 0

Graphics

This chapter describes the BASIC XE statements that allow you to manipulate the
wide variety of screen graphics available on the Atari personal computers. Before
going into the graphics commands, a little background about the modes available
would be useful,

Introducing Atari Graphics

The table below summarizes the graphics modes available via BASIC XE. A quick
glance down the "Type" column will show you that the Atari supports two types of
graphics, text and grid. In text graphics each pixel represents an ATASCII
character, while in the grid modes a pixel represents a box of color. The size of a
pixel depends upon the graphics mode. In all graphics modes, position 0,0 is at the
upper left corner of the graphics area; moving right increases the column value,
and moving down increases the row value. The diagram at the end of this section
illustrates this coordinate system visually.

If you look at the column headings in the table, you will notice two "Rows"
columns. "Split Rows" is the number of rows when you are using the graphics mode
in conjunction with a text window, and "Full Rows" refers to the number of rows
when used without the text window.

Following the table are short descriptions of these graphics modes.

Split Full
Mode Type Colunns Rows Rows Colors

0 Text 40 N/A 24 1.5
1 Text 20 20 24 5

2 Text 20 10 12 5

3 Grid 40 20 24 4

4 Grid 80 40 48 2

5 Grid 80 40 48 4

6 Grid 160 80 96 2

7 Grid 160 80 96 4

8 Grid 320 160 192 1.5
9 Grid 80 N/A 192 16
10 Grid 80 N/A 192 9
11 Grid 80 N/A 192 16
12 Text 40 20 24 4-5
13 Text 40 10 12 4-5

14 Grid 160 160 192
15 Grid 160 160 192

o N

Mode 0: this mode is the 1 color, 2 luminance (brightness) default mode for Atari
Personal Computers. It contains a 24 line by 40 character screen matrix. The
default margin settings of 2 and 39 allow 38 characters per line. Margins may be
changed by POKEing LMARGN and RMARGN (82 and 83). Some systems have
different margin default settings, The color of the characters is determined by
the background color. Only the luminance of the characters can be different.

BASIC XE Reference Manual Page 75

Introducing Atari Graphics Graphics
Modes 1 thru 8, 12 thru 15

Modes 1 and 2: these two 5-color modes are text modes. Characters in mode 1 are
twice the width of those in mode 0, but are the same height, while those in mode 2
are twice the width and twice the height of those in mode 0. In the split-screen
mode, PRINT will print data in the text window, and PRINT #6 will print data in
the mode 1 or 2 graphics window.

The default colors depend on the type of character input, as defined in the
following table:

SETCOLOR
Character Type Register Default Color
0..9 & A,.Z 0 Orange
Cntl Chrs & a..z 1 Light Green
Inverse 0..9 & A..Z 2 Dark Blue
Inverse Cntl Chrs & a..z 3 Red
Playfield and Border 4 Black

Note: see SETCOLOR to change character colors.

Unless otherwise specified, all characters are displayed in uppercase non-inverse
form. To print lowercase letters and graphics characters, use a POKE $2F4,$E2.
To return to upper case, use POKE $2F4,$E0.

Modes 3, 5, 7, and 15: these four 4 color grid modes are also split-screen displays
in their default state, but may be changed to full screen by adding 16 to the mode
number. Modes 3, 5, and 7 differ only in grid size. In mode 15 the pixels are
smallest, thereby giving the highest resolution.

Modes 4, 6, and 14: these three 2-color grid modes have an advantage over the
4-color grid modes in that they require less RAM space. Therefore, they may be
used when only two colors are needed and RAM is getting crowded.

Mode 8: this grid mode gives the highest resolution of all. As it takes a lot of RAM
to obtain this kind of resolution, it can only accommodate a maximum of one color
and two different luminances, as mode 0.

Modes 12 and 13: these two text modes are very special. Instead of using single
bits within a characters definition in the character set to determine how to
represent that character, they use bit pairs and interpret them as colors, as
follows:

Bit SETCOLOR

Image Register

00 4
01 0
10 1
11 2/ 3*

* If the character is in inverse video, register 3 is used, otherwise register 2 is

used. This enables you to have 5 color on the screen at one time, although you
may have only 4 colors in a single character.

Page 76 BASIC XE Reference Manual

Graphics Introducing Atari Graphics
Modes 9, 10, and 11

Modes 9, 10, and 11: these are the GTIA modes, and are somewhat different from
all the other modes. Note that these modes do not allow a text window. Mode 9 is
a one color, 16 luminance mode. The main color is set by the background color,
and the luminance values are determined by the information in the screen memory
itself. Each pixel is four bits wide, allowing for 16 different values (0-15). These
values are interpreted as the luminance of the base color for that pixel. Mode
11 is similar to mode 9 in that the color information is in the screen memory itself,
but the information for each pixel is interpreted as a color instead of a luminance.
Thus there are 16 colors, all of the same luminance. The luminance is set by the
luminance of the background color (default is 6). Mode 10 is somewhat of a
crossbreed of the other two GTIA modes and the normal modes in that it offers
lots of colors (like the GTIA modes) and uses the color registers (like the normal
modes). However, since mode 10 allows 9 colors, it must use the player color
registers as well as the other color registers. The following table shows how the
pixel values relate to the color registers and what BASIC XE command may be
used to set each color register.

Pixel System Reg. BASIC XE

Value Register Addr Statement
PCOLRO 704 PMCOLOR 0,aexp
PCOLR1 705 PMCOLOR 1,aexp
PCOLR2 706 PMCOLOR 2,aexp
PCOLR3 707 PMCOLOR 3,aexp
COLORO 708 SETCOLOR 0,aexp
COLOR1 709 SETCOLOR 1,aexp
COLOR2 710 SETCOLOR 2,aexp
COLOR3 711 SETCOLOR 3,aexp
COLOR4 712 SETCOLOR 4,aexp

QO 3 M UL WN =D

"\ upper Left (8,8)

GRAPHICS 4
sScreen

Lower Right (79, 39)\'

Text Window

BASIC XE Reference Manual Page 77

GRAPHICS Graphics
SETCOLOR

GRAPHICS (GR.)

Format : GRAPHICS aexp
Example: GRAPHICS 2

The GRAPHICS statement is used to select one of the graphics modes discussed
above. It automatically opens the graphics area of the screen (S:) on channel #6.
As a result of this, it is not necessary to specify a channel number when you want
to PRINT to the text window, since it is still open on channel #0. aexp is the
mode number as used in the table at the start of this chapter, and must be positive.

Modes 0, 2, 10, and 11 are full-screen display only, while modes 1 through 8 are
default to split-screen displays. To override the split-screen, add 16 to the mode
number (aexp). Adding 32 prevents GRAPHICS from clearing the screen memory.

SETCOLOR (SE.)

Format : SETCOLOR aexpl,aexp2,aexpd
Example: 100 SETCOLOR 0,1,4

SETCOLOR is used to set the hue and luminance of one of the color registers.
aexpl is the number of the color register (values 0-4 legal), aexp2 is the hue (see
following table), and aexp3 is the luminance (0-14, even numbers only, are valid).
the larger aexp3d is, the brighter the color. The following table shows the
aexp2 values and corresponding colors:

aexp2 Color aexp2 Color
0 Gray 8 Rlue
1 Gold 9 Light Blue
2 Orange 10 Turquoise
3 Red-Orange 11 Green-Blue
4 Pink 12 Green
5 Violet 13 Yellow-Green
6 Blue-Violet 14 Orange-Green
T Blue 15 Light Orange

Note: actual colors will vary with type and adjustment of TV or monitor used.

The following table shows the default values for the five SETCOLOR registers:

Reg Value Color Lum Color
0 328 2 8 Orange
1 $CA 12 10 Green
2 $94 9 4 Dark Blue
3 346 4 6 Pink-Red
4 $00 0 0 Black

SETCOLOR uses values (0 to 4 to specify the color register, while COLOR uses
different values. Translation between the two can be confusing, so careful study
of the table on the following page is advised.

Page 78 BASIC XE Reference Manual

Graphics SETCOLOR/COLOR Table
COLOR

SETCOLOR / COLOR Table

COLOR|SE. [Description COLOR|SE. |Description
GR Mode |value|reg|and Comments GR Mode jvalue|regfand Comments
andetll COLOR % ERaEafser, epinance 8|PF and Border
value Border Color M£ Plxe]
windows |picks Pixe
ihr 3{Pjixe
[} 8..9, A, E 18 4, 8 |Pixe
0.3 pLOT, a..é, cu’r? A2 2,i 1 ;;;:
] Iﬂiﬂ, A * 1
t . EHI . H l
ete 8# ahd ord?r 4 g:. | 5 E%§g
Pixe
3.0 é ; P’"} s| 4 |pF &
! g!:: y PF, & Border E‘E ? E ? ?or?TrﬁC xa
4,6,14 Pixel i hxe - E S|xo Hue td
ix u
1€ d1 9 |RI%e], pe, & Border 8,015 e nast
P 1 L
8) % Pllxgologmg?ggi Hue COLOR| & [B1t pair 9]
Bor S1or value |§ ajr |
51504 [7r & Tol p ﬁks Bi NPaerll'dlf chr
' r Color r s NORMAL v .
? Bif(k? 58% TR ?i [°ER'd 12,13 %OT 3 é“n?ﬁéﬁs“aif&zo""
j Lum kg .
Lu& Wi ‘ F? T! Lum B : 4 é?t Pair Se
get final Lum. etc
COLOR (C.)

Format: COLOR aexp
Examples: 110 COLOR ASC("A")
COLOR 3

The COLOR statement lets you choose which color will be used for all subsequent
PLOTs and DRAWTOs. The aexp value chooses the color and so must be a positive

integer 0..255. The color you get is dependent upon the graphics mode you're In,
as described in the table above.

Note: in text modes 0, 1, and 2, the number can be from 0 through 255 (8 bits) and
determines the character to be displayed (and its color in modes 1 & 2).

Note: when BASIC XE is first powered up COLOR 0 is the default.

BASIC XE Reference Manual Page 79

PLOT, DRAWTO Graphics
POSITION , LOCATE

PLOT (PL.)

Format : PLOT aexpl,aexp2
Fxample: 100 PLOT 5,5

The PLOT command is used to plot a pixel in the graphics window. aexpl specifies
the column (X-coordinate) of the pixel, and aexp2 specifies the row
(Y-coordinate). The color of the plotted point is determined by the last
COLOR statement executed. To change this color (and the color of the PLOTted
point) use SETCOLOR. Valid pixel coordinates are dependent on the graphics
mode being used. The range of points begins at (0,0), and extends to (columns in
mode)-1 in the x direction, and (rows in mode)-1 in the y direction.

DRAWTO (DR.)

Format : DRAWTO aexpl,aexp?2
Example: 100 DRAWTO 10,8

The DRAWTO statement draws a line from the current position of the graphics
cursor (set by a previous PLOT, POSITION, or DRAWTO) to the location
(aexpl,aexp2). aexpl represents the X coordinate (column) and aexp2 represents
the Y-coordinate (row). The color of the line is determined by the last
COLOR statement,

POSITION (POS.)

Format : POSITION aexpl,aexp?
Fxample: 100 POSITION 0,0

POSITION places the invisible graphics cursor at the location (aexpl,aexp2) on the
screen, and may be used in all graphics modes. In mode 0 only, POSITION affects
the text cursor, not the graphics cursor.

Note: the cursor does not actually move until the next command that uses the
cursor.

LOCATE (LOC.)

Format : LOCATE aexpl,aexp2,avar
Exemple: 150 LOCATE 11,15,X

The LOCATE statement retrieves the value of the pixel at coordinates
(aexpl,aexp2), and stores it in avar.

Page 80 BASIC XE Reference Manual

Graphics XIO Fill

X10 (x.) FiL
Format: XIO 18,#6,0,0,"S:"

This special application of the XJO statement fills an area on the screen between
previously PLOTted and DRAWTOed bounds with a non-zero COLOR value. The
zeroes in the XIO are used as dummies, but are required. The following steps illus-
trate the fill process:

1. Pick the COLOR.

2. PLOT bottom right corner.

. DRAWTO upper right corner,

4. DRAWTO upper left corner.

. POSITION the cursor at the lower left corner.
6. POKE address 765 with the fill COLOR value.
7. Make the XIO Fill call.

w

w

This method is used to fill each horizontal line from top to bottom of the specified
area. The fill starts at the left and proceeds across the line to the right until it
reaches a pixel which contains non-zero data (will wraparound if necessary). This
means that XIO Fill cannot be used to change an area which has been filled in with

a non-zero value, as the fill will stop.

Warning: XIO Fill will go into an infinite loop if you attempt to put COLOR 0 on a
line which has no non-zero pixels. Pressing <BREAX> or <SYSTEM RESET> can be
used to stop the fill if this happens.

BASIC XE Reference Manual Page 81

Space For Your Notes Graphics

Space For Your Notes

Page 82 BASIC XE Reference Manual

Player/Missile Graphics Introducing P/M Graphics

Player/Missile Graphics

This chapter describes the BASIC XE commands and functions used to access the
Atari's Player-Missile Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMG") represent a portion of the Atari hardware totally
ignored by Atari BASIC and Atari 0S. Fven the screen handler (the S: device)
knows nothing about PMG.

BASIC XE goes a long way toward remedying these omissions by adding seven PMG
statements and two PMG functions to the already comprehensive Atari graphies,
In addition, four other statements and two functions have significant uses in PMG
and will be discussed in this chapter.

Introducing P/M Graphics

For a complete technical discussion of PMG, and to learn of even more PMG
"tricks" than are included in BASIC XE, read the Atari document entitled "Atari
400/800 Hardware Manual" (Atari part number C016555, Rev. 1 or later).

We stated above that the S:device driver knows nothing of PMG, and in a sense
this is proper: the hardware mechanisms that implement PMG are, for virtually all
purposes, completely separate and distinct from the "playfield" graphics supported
by S:. For example, the size, position, and color of players on the video screen are
completely independent of the GRAPHICS mode currently active. In Atari (and
now BASIC XE) parlance, a "player" is simply a contiguous group of memory cells
displayed as a vertical stripe on the screen. Sounds dull? Consider: each player
(there are four) may be "painted" in any of the 128 colors available on the Atari
(see SETCOLOR for specific colors). Within the vertical stripe, each bit set to 1
paints the player's color in the corresponding pixel, while each bit set to 0 paints
no color at all! That is, any 0 bit in a player stripe has no effect on the underlying
playfield display.

Why a vertical stripe? Refer to the figure at the end of this section for a rough
idea of the player concept. If we define a shape within the bounds of this stripe
(by changing some of the player's bits to 1's), we may then move the stripe
anywhere horizontally by a simple register POKE (or via the PMMOVE statement in
BASIC XE). We may move the player vertically by doing a simple circular shift on
the contiguous memory block representing the player (again, the PMMOVE state-
ment simplifies this process).

To simplify:
A player is actually seen as a stripe on the screen 8 pixels wide by 128 (or
256, see below) pixels high. Within this stripe, you can POKE or
MOVE bytes to establish what is essentially a tall, skinny picture (though
much of the picture may consist of 0 bits, in which case the background
"shows through"). Using PMMOVE, you may then move this player to any
horizontal or vertical location on the screen,

BASIC XE Reference Manual Page 83

P/M Graphics Conventions Player/Missile Graphics

To complicate:
For each of the four players there is a corresponding "missile" available.
Missiles are exactly like players except that:
1) they are only 2 bits wide, and all four missile share a single block
of memory.
2) each 2 bit sub-stripe has an independent horizontal position.
3) a missile always has the same color as its parent player.

Again, by using the BASIC XE statements (MISSILE and PMMOVE, for example),
you the programmer need not be too aware of the mechanisms of PMG.

Upos dbl l'— sgl
16-" 32

Hpos Hpos
48— +—208
r Shape
its show
PMCOLOR.

——HpoSXL1486—F

112—‘ 22‘
Playfield ar‘e'a-T 127 L_r;ss

P/M Graphics Conventions

1. Players are numbered from 0 through 3. Each player has a corresponding missile
‘whose number is 4 greater then that of its parent player, thus missiles are
numbered 4 through 7. In the BUMP function, the "playfields" are actually the
colors as defined by SETCOLOR, but are 8 grater than the SETCOLOR register
value, and so are numbered 8 - 11.

2. There is some inconsistency in which way is "up". PLOT, DRAWTO, etc. are
aware that 0,0 is the top left of the screen and that vertical position numbering
increases as you go down the screen., PMMOVE and VSTICK, however, do only
relative screen positioning, and define "+" to be up and "-" to be down.

3. "pmnum" is an abbreviation for Player-Missile Number and must be a number
from 0 to 3 (for players) or 4 to 7 (for missiles).

Page 84 BASIC XE Reference Manual

Player/Missile Graphics PMGRAPHICS

PMGRAPHICS (PMG.)

Format : PMGRAPHICS aexp
Example: PMG. 2

This statement is used to enable or disable the Player/Missile Graphics system.
aexp should evaluate to 0,1, or 2, as follows:

0 - Turn off PMG
1 - Enable PMG, single line resolution
2 - Enable PMG, double line resolution

Single and Double line resolution (hereafter refered to as "PMG Modes") refer to
the height which a byte in the player "stripe" occupies - either one or two
television scan lines (GRAPHICS 7 has pixels 2 scan lines high, like PMG. 2, and
GRAPHICS 15 has pixels 1 scan line high, like PMG. 1). The secondary implication
of single line versus double line resolution is that single line resolution requires
twice as much memory space as double line - 256 bytes per player versus 128
bytes. The following diagram shows PMG memory usage in BASIC XE, but you
really need not be aware of the mechanics if you use the PMADR function:

Current GRAPHICS Mode
PMG. PMG. 1
48400 : 14868
Player3
+$388 = > Player3
+$300 = ”"1 +$708
+$288 e Player2
Player$8
+e200 M3 | M2 | M1 | M8 R
+$1886 Player!
+$508
Player8
PMBASE +$408
. M1 | M2 | M3 | M4
NOTE: MEMTOP ($2ES) pglnts
to the bottom of the +$368
missiles.
PMBASE

BASIC XE Reference Manual Page 85

PMCOLOR Player/ Missile Graphics
PMMOVE

PMCOLOR (PMCO.)

Format : PMCOLOR pmnum,aexpl,aexp2
Example: PMCOLOR 2,12,8

PMCOLOR is identical to SETCOLOR in usage except that a P/M color register
rather than a playfield graphics color register is set to hue aexpl and luminance
aexp2. Note: there is no correspondence in PMG to the COLOR statement of
playfield graphics - none is necessary since each player has its own color.

The example above would set player 2 and missile 6 to a medium (luminance 8)
green (hue 12).

Note: PMG has no default colors set on power-up or <SYSTEM RESET>.

PMMOVE

Format : PMMOVE. pmnum [,aexpl] [;aexp2]
Examples: PMMOVE 0,120;1

PMMOVE 1,80

PMMOVE 4;-3

Once a player or missile has been "defined" (via POKE, MOVE, GET, BGET, or
MISSILE), the truly unique features of PMG under BASIC XE may be utilized. With
PMMOVE, you may position each P/M shape anywhere on the screen independently
in the blink of an eye. Because of the hardware implementation, though, there is a
difference in how horizontal and vertical positions are specified.

aexpl is taken to be the absolute position of the left edge of the "stripe" to be
displayed. This position ranges from 0 to 255, though the lowest and highest
positions in this range are beyond the edges of the display screen. Note: changing
a player's width (see PMWIDTH) will not change the position of its left edge, but
will expand the player to the right.

aexp? is a relative vertical movement specifier. Recall that a "stripe" of player is
128 or 256 bytes of memory. Vertical movement must be accomplished by actual
movement of the bytes within the stripe - towards either higher memory (down the
screen) or lower memory (up the screen). BASIC XE allows you to specify a
vertical movement between -255 (down 255 pixels) and +255 (up 255 pixels),
inclusive.

Note: the +/- convention on vertical movement conforms to the value returned by
VSTICK. For example, PMMOVE 2;VSTICK(2) will move player 2 up or down (or
not move him) in accordance with the joystick position.

Note: SET 7,aexp may be used to tell PMMOVE whether a P/M should "wrap
around" (from bottom of screen to top of screen or vice versa) or should disappear
as it scrolls off the screen.

Page 86 BASIC XE Reference Manual

Player/Missile Graphics MISSILE
PMWIDTH

MISSILE (MIS.)

Format: MISSILE pmnum,aexpl,aexp?
Example: MISSILE 4,48,3

The MISSILE statement allows an easy way for a parent player to "shoot" a missile.
pmnum is the missile number (4-7), aexpl specifies the absolute vertical position of
the beginning of the missile (0 is the top of missile memory), and aexp2 specifies
the vertical height of the missile. For example, MISSILE 4,64,3 would place a
missile 3 PM G pixels high at pixel 64 from the top.

Note: MISSILE does not simply turn on the bits corresponding to the position
specified. Instead, the bits specified are exclusive-or'ed with the current missile
memory. This allows you to erase the previous missile pmnum when creating
another. For example:

10 Missile 4,48,1

20 Missile 4,44,1

The first statement creates a missile 1 PMG pixel high at vertical position 40. The
second statement erases the first missile while creating another 1 PMG pixel
missile at vertical position 41, thus giving the effect of a moving missile.

PMWIDTH (PMW.)

Format : PMWIDTH pmnum,aexp
Fxample: PMWIDTH 1,2

Just as PMGRAPHICs allows you to select single or double pixel height,
PMWIDTH allows you to specify the screen width of players and missiles.
However, where PMGRAPHICs selects the vertical resolution mode for all players
and missiles, PMWIDTH allows the width of each player or missile to be specified
separately . aexp is used for the width and should have a value of 1, 2, or 4 -
representing the number of color clocks (equivalent to a pixel width in GR. 7) wide
each bit in a player definition will be,

Note: PMG. 2 and PMWIDTH 1 combine to allow each bit of a player definition to
be equivalent in size to a GR. 7 pixel, while PMG. 1 and PMWIDTH 1 combine to be
equivalent to a GR. 15 pixel - not altogether accidental occurences.

Note: although players may be made wider with PMWIDTH, the resolution then
suffers. Wider high-resolution "players" may be made by placing two or more
separate players side-by-side (as in the second example program at the end of this
chapter).

BASIC XE Reference Manual Page 87

PMCLR , BUMP Player/Missile Graphics
HITCLR

PMCLR (PMC.)

Format : PMCLR pmnum
Example: PMCLR 4

PMCLR "clears" a player or missile area to all zero bytes, thus "erasing" the P/M.
PMCLR is aware of what PMG mode s active and clears only the appropriate
amount of memory. Caution: pmnum values 4 through 7 all produce the same
action - all missiles are cleared, not just the one specified. To clear a single
missile, try SET 7,0 : PMMOVE N;255.

f BUMP

Format: BUMP(pnmnum,aexp)
Example: IF BUMP(4,1) THEN B=BUMP(0,8)

BUMP accesses the P/M collision registers of the Atari and returns a 1 (collision
occurred) or 0 (no collision occurred) as appropriate for the pair of objects
specified. Note that the second parameter (aexp) may be either a player number
or playfield number (see the section on PMG conventions, above). Valid BUMPs:

Player to Player: RUMP(0D-3,0-3)
Player to Playfield: BUMP(0-3,8-11)
Missile to Player: BUMP(4-7,0-3)
Missile to Playfield: BUMP(4-7,8-11)

Note: BUMP(p,p), where the p's are 0 through 3 and identical, always returns 0
(i.e. a player can't collide with itself).

Note: we advise that youreset the collision registers if you have not checked them
in a long time or after you are through checking them at any given point in a
program, You can do this using HITCLR.

HITCLR

Format : HITCLR
Example: 100 HITCLR

HITCLR resets the collision registers used by BUMP, thus avoiding spurious
collision readings. We suggest that you use HITCLR just before you do something
that might create a collision (move or create a P/M, change the playfield, etc.).
Alternatively, you could use HITCLR immediately after you check for collisions
(using BUMP).

Page 88 BASIC XE Reference Manual

Player/Missile Graphics PMADR, Using POKE and PEEK with P/M's
Using MOVE, BGET and BPUT with P/M's

f PMADR

Format: PMADR(pmnum)
Example: PO=PMADR(0)

The PMADR function returns the memory address of any player or missile. It is
useful when you wish to MOVE, POKE, BGET, etc., data to (or from) a player area.
Note: PMADR(m) - where m is a missile number (4 through 7) - returns the same
address for all missiles.

Using POKE and PEEK with P/M's

One of the most common ways to put player data into a player stripe may well be
to use POKE. In conjunction with PMADR, it is easy to write understandable
player loading routines, for example:

16 For Loc=48 To 52

28 Read AiPoke Pmadr(@)+Loc,f
30 Wext Loc

40 Data $99,$BB,SFF,$8B,$99

PEEK might be used to find out what data is in a particular player location.

Using MOVE with P/M's

MOVE is an efficient way to load a large player and/or move a player vertically by
a large amount. This ability to MOVE data either upwards or downwards allows for
interesting possibilities. Also, it would be easy to have several player shapes
contained in stripes and then MOVEd into place at will. For example,

Nove Adr(a$),Pradr(2),128

could move an entire double line resolution player from A$ to player 2, and

Poke Pwadr(i),$ffiHove Pradr(l),Pradr(id+1,127

would fill player 1's stripe with all "on" bits, creating a solid stripe on the screen,

Using BGET and BPUT with P/M's

As with MOVE, BGET may be used to fill a player memory quickly with a player
shape. The difference is that BGET may obtain a player directly from the disk!
For example,

Bget #3,Pradr(@), 580

would get a PMG.2 mode player from the disk file OPENed on channel 3, and

Bget #4,Pnadr(4),$588

would fill all the missiles and players in PMG.1 mode - with a single statement!

BPUT would probably be most commonly used during program development to save
a player shape (or shapes) to a file for later retrieval by BGET.

BASIC XE Reference Manual Page 89

Using USR with P/M's Player/Missile Graphics
Two P/M Graphics Programs

Using USR with P/M's

Because of USR's ability to pass parameters to an assembly language routine, PMG
functions (written in assembly language) can be incorporated easily into to
BASIC XE. For example,

A=USr (Publink,Pradr(2),$80)

might call an assembly language program (at address PMBLINK) to blink player 2,
whose size is 128 bytes.

Two P/M Graphics Programs

168 Setcolor 2,0,0:Remw "Note: still in GR.®™

110 Pwugraphics 2:Rewm "double line res"

120 Let WHidth=8:Y=48:Ren "initializing"

130 Prcir @:Pnclr 4:Ren "clear player 6 and wissile 6"
140 Pncolor 8,13,8:Ren "a nice green player®

150 P=Pnadr(0) ;Ren '“gets address of player 8"

160 For I=P¢Y To P#Y¢+4:Rem "a 5 elewnent player"

178 Read V1:Ren "see below for DATA schewe'

ise Poke I,V1:Renm '"actually setting up"

190 MNext I

280 For X=1 To 120:Ren '"player noverent loop"

2108 Prmuove 8,K:Rem "moves player horizontally"

220 Sound 8,HtH,8,15:Rer "just naking sowe noise"

230 Next ¥

2406 Nissile 0,Y,1:Rem "a one-high missile at top of player"
258 Wissile 8,Y+2,1:Ren “another, in middle of player"
260 Nissile 0,Y+4,1:Ren "and at bottow of player"

278 For K=127 To 255:Rem "missile wmovewment loop"

280 Prrove 4,K:Ren "noves nmissile 8"

290 Sound 8,255-¥,16,15

3es If (R&7)=7:Rewn "every eighth horiz. position"

318 Missile 8,Y,5:Ren "you have to see this to believe it"
320 Endif :Rem "you could have had an ELSE, of course"
330 Next X

340 Pnmove 8,8:Rew "so width doesn't change on screen"
358 Hidth=Hidtht2:Rern "we'll make the player wider"

360 If Width)4d Then Hidth=e

370 Puwidth @,Hidth:Ren "the new width"

388 Puclr 4:Rem "no wmore nissile"

398 Goto 280:Rem “do it all again“

400 Ren
418 Rer "™ttt the player's shape DATA HHO"
428 Rem " 84218421 "

438 Ren "$§99
448 Ren "$BD
458 Ren "S$FF
460 Ren "$B0 (J.EEEE.

478 Ren "$99 H..Hl..H “
480 Data $99,$BD,S5FF,$BD, %99

Notice how the data for the player shape is built up - draw a picture on an 8-wide
by n-high piece of grid paper, filling in whole cells. Call filled in cells '1', and
empty cells '0'. Convert the 1's and 0's to hex notation and, viola! -- you have
your player.

This program will run noticably faster if you use multiple statements per line. It
was written as above for clarity, only.

Page 90 BASIC XE Reference Manual

Player/Missile Graphics Two P/M Graphics Programs

A more complicated program, sparsely commented.

188 Graphics B8:!Rem "npot necessary, just prettier"

110 Prgraphics 2:Pwclr @:Pwucir 1

120 Setcolor 2,0,8:Prcolor 8,12,8:Prcolor 1,12,8

138 pe= Pnadr(n) 91 Pradr(1): Ren "addr's of 2 Players"
140 VO=68:V0l1d=VB:Ren "starting vertical pos'n"

158 He=118:Ren ''starting horizontal pos'n"

168 For Loc=Ve-8 To VUB+7:Rem "a 16-high double player"
170 Read X

180 Poke PB+Loc,Int(X/$6180)

190 Poke PitLoc,R&SFf

2980 Mext Loc

218 Rem "aniwate it"

228 Let Radius=48:Deg

230 Mhile 1:Ren "infinite loop!!"

240 C=Randown(15) :Pncolor ©,C,8:Prcolor 1,C,8

250 For Angle=@ To 355 Step S:Rem ''in DEGrees, rerember"

260 Unew=VU8+Radius¥*5in(Angle)

270 VUchange=-VUnew-Vold:Ren '"change in vpos"

280 Hnew=HB+Radius¥*Cos (angle)d

296 Pruuove 8,Hnew;VUchange:Pmwnove 1,Hnewt#8;Vchange
R{1] Ren '"move two players together"

Ii0 Vold=Vnew

3208 Sound ©,Hnew,18,12:50und i,VUnew,10,412

338 Hext Angle

340 Rew "“just did a full circle!"

3580 Endwhile

360 Rem "we better WEVER get here!"

376 Rem '38HH: the fancy player DhTﬁ HBHE"
J6® Ren ' 8421842184218421

396 Rer “$63CO0DW|HE...... "
400 Ren "$0C30] . T
410 Rem "$1008 savollaes ®
420 Rew "'$2004 crwsilBes Y
430 Ren '$4002 "
448 Ren "$4E72
450 Rewn "$8AS51
468 Ren "$BE71
470 Renm "'$8@01

480 Ren "29909 B oo . @M
490 Ren "$4812 o ' O
500 Ren "$47E2 == J. .I. e

518 Ren "$2004
526 Rem "$1008
530 Ren "$8C30
548 Ren "$@83C0 EEEEE)

Re
360 Data $93c8,508C308,51008,52004,54002,54E72,56A51,$8E71
570 Data $8091,590089,54812,547E2,52084,$1008,$0C30,583CO

"
o LR

The factor slowing this program the most is the SIN and COS being calculated in
the movement loop. 1f these values were precalculated and placed in an array this
program would move!

BASIC XE Reference Manual Page 91

Space For Your Notes Player/Missile Graphics

Space For Your Notes

Page 92 BASIC XE Reference Manual

Sound SOUND

Sound

This chapter is devoted to the SOUND statement, and shows how to access the
many forms of sound available on Atari Home Computers.

SOUND (s0.)
Format: SOUND aexpl,aexp2,aexp3,aexp4

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program
encounters another SOUND with the same aexpl or an END. aexpl is the voice on
which you want the sound produced, and ranges between 0 and 3, inclusive.
aexp2 is the frequency (pitch) of the sound, and ranges between 0 and 255,
inclusive. The lower aexp2 is, the higher the frequency. aexp3 is a measure of the
sound's distortion (fuzziness). Valid numbers are 0 -14, even numbers only. A
value of 10 creates pure tones like a flute, and a 12 produces sounds similar to a
guitar. aexp4 is the volume of the sound. Valid values are 1 - 15; the lower the
number, the lower the volume.

Here is a table for various musical notes using a distortion of 10:

Note: Low Notes High gotes
C 14 29 60 121 243
B 15 31 64 128 255
BP / a¥ 16 33 68 128
A 17 35 72 144
AP /Gt 18 37 76 153
G 19 40 81 162
Gb /Pt 21 42 85 173
F 22 45 91 182
E 22 47 96 193
EP 7/ p* 24 50 102 204
D 26 53 108 217
/ CE 27 57 114 220

Middle C is marked by a nn This program plays a C scale using the above values:

18 Read A:If QY255 Then End

20 Sound 6,A,10,10:Print @

38 For Hait=i Yo 48@:Mext Wait

49 Goto 19

50 bata 14,15,16,17,18,19,24,22,23,24,26,27,29,31,33
60 Dbata 35,37,40,42,45,47,50,53,57,608,64,68,72,76,81
70 bata 85,91,96,162,108,114,121,128,136,144,153,162
80 bata 173,182,193,204,217,230,243,255,256

Notice that the DATA statement in line 80 ends with a 256, which is outside of the
designated range. The 256 is used as an end-of-data marker,

BASIC XE Reference Manual Page 93

Space For Your Notes Sound

Space For Your Notes

Page 94 BASIC XE Reference Manual

Sorting Arrays Introducing the Array Sorting Statements

Introducing the Array Sorting Statements

Rather than go directly into the descriptions of SORTUP and SORTDOWN, we
thought it best to begin with some comments and hints about their use, because
they have many foibles in common.

First and foremost, note that SORTUP and SORTDOWN can only be used to sort
arrays. In their simplest form they are extremely easy to use. For example,
consider the following short program:

18 Pin Array$(s,20)

20 For I=1 Yo S:Input "String) ",Array$(I;):Next X
38 Sortup array$

40 For I=1 To S:Print Array$(I;):Next I

58 Run

This program simply sorts 5 INPUTted strings and then shows the sorted order, At
this time, we would like to suggest that you type in this program and try it out
(Keep it around - we will use it more later). Give several different sets of words
as answers. Note how neatly it sorts the words into ascending order.

Or does it? Try entering some words in uppercase and some in lowercase. What
happens? Does it surprise you to find that "Z 00" comes before "apple"? Actually,
the reason for this behavior is readily understood once you realize that
SORTUP works on characters using ATASCII ordering (see Appendix A for a list of
ATASCII codes).

Even if we restrict ourselves to the "printable" characters in the ATASCII set
(alphanumeric and standard symbols), we find no real help. Digits come before
uppercase letters which come before lowercase letters, but symbols are intermixed
in no real useful fashion. Because the effects of this hodgepodge ordering may not
be desirable in a sorted list, you may wish to limit a sort to a substring of the
string elements in a savar. For example, if you have a savar where each string
within it contains both a person's name and their phone number, you may wish to
perform a sort based solely on names. Further, to ensure that the sorted order is
consistent, you may wish to ensure that the names are stored in uppercase only.

Fortunately, SORTUP and SORTDOWN offer you the ability to sort based on sub-
strings. And, while BASIC XE does not provide a built-in method of obtaining
uppercase, non-inverse strings, it isn't very hard to build a subroutine that will do
the real work for you. For example, the following PROCEDURE converts all
characters in its svar parameter String$ (not a savar) to non-inverse, and converts
lowercase letters to uppercase: -

868 Procedure "To lpper' Using !String$

810 Local I,Tewp
820 For X=1 To Len(String$)

83e Ternp=AsCc (String$(I)I&S7¢

840 If Tewp)$60 And Tewnp{($7b Then Temp=Tewp&S$Sf
850 String$(I,I)=Chré(Tenpd

860 Hext X

870 Exit

BASIC XE Reference Manual Page 95

Introducing the Array Sorting Statements Sorting Arrays

For now, don't enter this subroutine. Instead, let's investigate the concept of
substrings, as mentioned above. Just change line 30 in that little program we
typed in earlier so that a LIST gives you the following:

18 Din Array$(s,2e)

28 For I=1 To S:Input "String) “,Array$(I;):Mext I

38 Sortup array$ Using ;3,5

40 For I=1 Vo 5:Print Array$(I;):Next I
50 Run

Once again, enter some strings in response to INPUT's prompt. This time, though,
pay special attention to the third through fifth characters of each string. Notice
anything funny about the sorted order? That's right, it is based solely on the
characters in those positions. If you have worked with BASIC XE string arrays at
all yet, the notation in line 30 may be both familiar and confusing. Perhaps
changing line 40 to the following will clarify the meaning of line 30:

48 For I=1 To 5:Print Array$(I;3,S),ArrayscI;):Next I

This little example should serve to remind you that you may reference characters
within an element of a string array just as easily as you may reference them in an
ordinary string. The "magic" character is the semi-colon. Tt separates the array
element number from the desired character positions. (And, as the second usage of
Array$ in that same line shows, the semi-colon is slways necessary when referring
to an element of a string array.)

Now, since the SORTUP of line 30 refers to the entire savar Array$, there is no
need for the following parentheses (and, indeed, they are not allowed). Instead,
the keyword USING tells BASIC XE that we will be working with only part of the
array and/or its elements. In particular, the semi-colon following USING serves as
a reminder that the aexps following it should be used to define a substring of the
string elements in a savar.

There is one last capability of the sorting statements which we will discuss before
moving on to other helpful hints., The program we have been working with seems
all fine and good if we want to enter exactly five elements into the array.
Suppose, though, that we did not know how many elements we'd be working with.
Fear not, RASIC XFE shall provide. Time for another example:

10 Dim String$(20,28)

20 For I=41 To 28:Input "String) *,String$(I;)

25 If Len¢String$(I;)) Then Next I

38 Sortup String$ Using 1 To I-1

;: ;or J=1 To I-1:Print String$(J;):Next J
un

The first change you will notice is that the FOR loop on line 20 now INPUTs 20
strings. The second change is the insertion of line 25. Instead of blindly
continuing to ask for input until 20 items have been entered, the program only goes
back for another if the length of the current string is non-zero. That means that
you may stop entering items at any time by hitting the RETURN key alone in
response to any INPUT prompt.

Page 96 BASIC XE Reference Manual

Sorting Arrays Introducing the Array Sorting Statements

And look at the SORTUP in line 30. Can you guess what the Using 1 To I-1 is for?
That's right, only the first 1-1 elements of the array will be sorted! And if, for
some reason, you wanted to never sort the first element of the array, you could
have written

38 Sortup String$ Using 2 To I-1

(Why would you ever do that? Well, maybe you keep special information about a
savar in its first element, thus having the actual data start at the second element.)

Well, so much for sorting string arrays. We haven't yet mentioned how to sort
arithmetic arrays, but it's just as easy. You use the same statements,
SORTUP and SORTDOWN, but you use the name of an arithmetic array as the first
argument, like this;

Sortup ACY

Notice that instead of following the array name by a dollar sign (as with string
arrays), you follow it by a pair of parentheses (to indicate that the array is
arfthmetic). Since no element range was specified in our example, this statement
will sort all elements of the array A().

If you don't want to sort the whole array, you can specify a range of elements to
sort, just like we did when sorting string arrays. The following will sort elements
3 through 5, inclusive, of the array Temp{) in descending order:

Sortdown Temp() Using I To §

There are two restrictions to bear in mind when sorting srithmetic arrays. First,
you can't specify substring indices (because numbers don't have substrings).
Second, and more important, you can only sort arithmetic arrays, not matrices!
Thus, if you have the following DIMension line in your program:

19 Din AC48),B(16,28),C(58)

you could use SORTUP and SORTDOWN to sort A{) and C(), but not B(), since it
has two dimensions and so is a matrix.

Finally, there are a couple of rules to keep in mind:

1) The ending element number to be sorted must be greater than or equal to the
beginning element number (i.e, you can't sort elements 3 TO 1),

2) Both element numbers must be within the DIMensioned bounds of the array, and

?) the previous two rules also apply to the numbers you use to specify a substring
range when sorting savars.

BASIC XE Reference Manual Page 97

SORTUP Sorting Arrays
SORTDOWN

SORTUP / SORTDOWN

array [USING [aexpl TO aexp2][;aexp3,aexpd]]
SORTDOWN
Examples: SORTUP Aarray
SORTDOWN Aarray USING Min TO Max
SORTUP Sarray$ USING ;1,4
SORTDOWN Sarray$ USING 5 TO 10

Format : ‘ SORTUP

Note: the j;aexp3,aexp4 option may be used only when sorting savars. You can
not use it when sorting arithmetic arrays!

SORTUP sorts the elements of an array in ascending ATASCII or numeric order
(dependent upon the array's type), while SORTDOWN sorts in descending order. If
no element range aexpl TO aexp2 is specified (15t and 3rd examples), all elements
are sorted,

If an element range is specified, both beginning and ending elements must be
given, separated by the keyword TO.

Note: if no substring jaexp3,aexp4 is specified (4th example), the sorting is done
using the string elements in their entirety. If a substring is specified, both the
beginning and ending of the substring must be specified, separated by a comma. If
an element range is not being used but a substring is, the keyword
USING must precede the substring-marking semicolon (3Td example).

Note: if a string element is shorter than the specified ending position of the
substring being used, the substring for that element will be shortened accordingly.
If two compared strings are equal, but one is longer than the other, the longer one
is greater than the shorter one (e.g., "abc"<"abed"). This is intuitively correct as
well as being consistent with the other string comparisons available in BASIC XE.

Page 98 BASIC XE Reference Manual

Using Fixed Data in Your Program DATA
READ

Using Fixed Data in Your Program

The three statements in this chapter allow you to insert and utilize fixed data in
your BASIC XE programs. These statements are DATA, READ, and RESTORE.

DATA (D.)

Format: DATA adata [,adatal

Examples: 100 DATA 12,13,14,15,16
110 DATA Mike,Becky,Tonmy,Kathleen
120 DATA "adata with a , in it"

DATA is used in conjunction with READ to access elements in a data list. A
DATA statement may be anywhere in a program, but it must contain at least as
many adata items as used in the READ statement that accesses them; otherwise an
"No DATA to READ" error (#6) is displayed on the screen. When more than one
DATA statement is used, the adata items form a single list. For example, the first
two examples could just as well be combined into

100 DATA 12,13,14,15,16,Mike,Becky,Tommy,Kathleen
Note: all characters except comma (,) and <RETURN> are legal in adata.

However, if you put adata in double quotes ("adata"), then all characters except
double quote (") and <RETURN> are allowed (as in the last example).

READ

Format: READ varl [,var2...]
Exemples: 200 READ A,B,C,D,F.
210 RFAD A$,B$,C$,D$,E$

The READ statement is used to retrieve adata items in a DATA list, and store
them in program variables for use. When a READ is executed, the first available
adata item is stored in varl, the second is stored in var2, and so on. The
adata item and the variable into which it is to be stored must be of the same data
type (arithmetic or string).

The following program sums a group of numbers using READ and DATA:

10 For N=1 To 5

2@ Read PiH=M4D

30 Next W

40 Print "Sum is “;N

50 End

60 bata 30,15,166,87,47

BASIC XE Reference Manual Page 99

RESTORE Using Fixed Data in Your Program

RESTORE (RES.)

Format : RESTORE [lineno]
Examples: 100 RESTORF
RESTORE X+2

BASIC XE uses an internal 'pointer' to keep track of the next adata item in the
DATA list to be READ. When used without the optional lineno, RESTORE resets
this pointer to the first adata item in the first DATA statement in the program.
When lineno is specified, RESTORE sets the pointer to the first adata item in the
DATA statement on the program line lineno. This permits repetitive use of the
same adata items, as shown in the following example:

18 For N=2 To 1 Step -1
20 Restore 80+NW

30 Read A,B:N=A+B

48 Print “Total is '";M
58 Next N

60 End

81 bata 30,15

82 pata 10,20

Page 100 BASIC XE Reference Manual

Accessing Memory Directly PEEK
POKE

Accessing Memory Directly

The commands in this chapter allow you to access memory directly, and are very
useful when you want to inspect and/or modify Atari variables and routines, Fach
of the commands in this chapter allows you to specify an optional bank number.
For a discussion of the meaning of this number, sce EXTEND.

The statements discussed here are POKE, DPOKE, and MOVE, and the functions
are PEEK and DPEEK.

f PEEK

Format : PEFK(eexp [,bank])
Examples: 1000 IF PEEK($4000,4)=255 THEN PRINT "Main Memory $4000=255"
100 PRINT "Left Margin is "; PEEK(R2)

PEEK Returns the value stored at memory location aexp. The address specified
must evaluate to an integer between 0 and 65535. The value returned will be a
decimal integer between 0 and 255, inclusive. This function allows you to examine
either RAM or ROM locations. In the first example above, PEEK is used to
determine whether location $4000 in main memory contains the value 255. In the
second example, PEEK is used to find the current left margin.

POKE

Format : POKF. aexpl,aexp2 [,bank]
Examples: POKE 82,10
100 POKE 82,20

The POKE statement puts the value aexp2 into memory location aexpl. aexpl may
range in value between 0 and 65535, inclusive, and aexp2 has range 0..255. The
first example changes the screen's left margin from its default value of 2 to a new
value of 10. To restore the margin to its normal default position, press <SYSTFM
RESET>.

Note: POKE cannot be used to alter ROM locations.

While you are becoming familiar with this statement we advise that you first
PEEK at the memory location and write down the value before you POKE in a new
value, Then, if the POKE doesn't work as anticipated, you can POKE the original
value back in,

BASIC XE Reference Manual Page 101

DPEEK , DPOKE Accessing Memory Directly
MOVE

f DPEEK

Format: DPEEK(aexp [,bank])
Example: PRINT "Variable Name Table is at ";DPEEK($82)

DPEEK is very similar to the PEEK function, except that it allows you to find out
the two-byte value at the memory locations aexp and aexp+l. This is especially
useful when looking at locations which contain address information, asin the
above example. If you did this example using PEEKs, it would look like

Print "Variable Hawne Table is at ';Peek(130)+Peek(131)3%128
It's obvious that using DPEEK is much easier.

DPOKE

Format: DPOKFE aexpl,aexp? [,bank]
Exsmple: DPOKE 88,$8000

DPOKE is similar to POKE, except that it allows you to put a two-byte value into
memory locations aexpl and aexpl+l. aexp2 is the value, and must be an integer
value 0..65535, inclusive. In the above example, the address of the upper left-hand
corner of the screen (this address is stored at locations 88 and 89) is changed to
$8000. To do this using POKEs you would need to do an amazing amount of math
to get the right number into each of the two bytes.

MOVE

Format: MOVE aexpl,aexp2,aexp3 [,bank]
Example: MOVE $D000,$8000,%400

Caution: be careful with this command! MOVE will move any number of bytes from
any address to any address at assembly language speed. No address checks are
made! aexpl is the starting address of the block you want to move, aexp2 is the
starting address of the place where you want the block moved to, and aexp3 is the
length of the block. The sign of aexp3 (the length) determines the order in which
the bytes are moved, as follows:

Positive Negative

(from) -> (to) (from+len-1) -> (to+len-1)
(from+1) => (to+1) (from+len-2) -> (to+len-2)
(from+len-1) -> (to+len-1) (from) -> (to)

When the length is positive, the destination block can overwrite lower part of the
source block. When the length is negative, the destination block can overwrite the
upper part of the source block.

Note: MOVE cannot automatically move memory between banks. To do so you must
first MOVE the block to main memory and then MOVE it to the other bank.

Page 102 BASIC XE Reference Manual

Arithmetic Functions ABS, INT
SGN, SQR

Arithmetic Functions

The arithmetic functions supported by BASIC XE are ABS, INT, SGN, SQR, EXP,
LOG, CLOG, RND, and RANDOM. At the end of the chapter you will find a
program that shows these functions in use.

f ABS

Format: ABS(aexp)
Example: A=ABS(-160)

ABS returns the absolute (positive) value of aexp.

fINT

Format : INT(aexp)
Examples: TI=INT(-3.445)
X=INT(14.753)

INT returns the greatest integer less than or equal to aexp. This is true whether
the expression evaluates to a positive or negative number. Thus, in the first
example, -4 is assigned to I, and 14 is assigned to X in the second example. Note:
this function should not be confused with the INT function on calculators which
simply truncates all decimal places. For those of you with a mathematical back-
ground, you may think of INT as the "Floor" function.

f SGN

Format : SGN(aexp)
Example: 100 X=SGN(-100)

SGN returns a -1if aexp evaluates to a negative number, a 00 if aexp evaluates to
0, or a 1 is aexp evaluates to a positive number,

f SQR

Format: SQR(aexp)
Example: X=SOR(100)

SQR returns the square root of aexp. Note: aexp must be positive,

BASIC XE Reference Manual Page 103

EXP,LOG, CLOG Arithmetic Functions
RND, RANDOM

f EXP

Format : EXP(aexp)
Example: PRINT EXP(3)

The EXP function returns the value of e (approximately 2.71828179), raised to the
power aexp (i.e., e8€XP),

fLOG

Format: LOG(aexp)
Example: A=L0OG(20)

The LOG function returns the natural logarithm (In) of aexp. LOG(0) gives an
error, and LOG(1) is 0.

Note: LOG and EXP are complementary functions (i.e., both LOG(EXP(n)) and
EXP(LOG(n)) equal n, within the bounds of the accuracy of BASIC XE's math
routines).

f CLOG

Format: CLOG(aexp)
Example: A=CLOG(10)

The CLOG function returns the base 10 logarithm (logy 0) of aexp. CLOG(0) gives
an error, and CLOG(1) is 0.

f RND

Format: RND{aexp)
Example: 10 X=RND(0)

RND returns a hardware-generated random number greater than or equal to 0, but
less than 1. aexp is a dummy and has no effect on the number returned, but is re-
quired anyway.

f RANDOM

Format : RANDOM(aexpl[,aexp2])
Examples: X=RANDOM(99)
Y=RANDOM(10, 20)

The RANDOM function returns a random integer dependent upon aexpl and aexp2.
When aexpl alone is specified (as in the first example), the value returned is
between 0 and aexpl-1, inclusive. When both aexpl and aexp2 are specified (as in
the second example), the value returned is between aexpl and aexp2, inclusive.

Page 104 BASIC XE Reference Manual

Arithmetic Functions

An Example Program Using Arithmetic Functions

508
518
520
530
540
550
560
570
586
596
688
618
626
636
640
656
660
678
680
698
780

An Example Program Using Arithmetic Functions

Console=$d8if:S5tart=501
open $1,4,8,"K:"
Test=-2.71828183
Print :Print "He start with a value of ";Test
Test=Abs(Test)
Print :Print “Its absolute value is ";Test
Test=Int(Test)
Print :Print "And the integer part of that is ";Test
Test=Sqri{Testd
Print 1Print "“Mhich has a square root of ";Test
Test=Test/2
Print (Print "Half of that gives ";Test
Print * (remember that number, half 5QR¢221"
Test=5g9n(Test)
:rint tPrint "The ‘SGH° of that is “;Test

eg
Test=atn(Test)
Print :Print “Khose arcTangent of ";Test;* is"
Test=Int(Test) :
Print " close, Correct result is '";Test;" degrees"
Print :Print “The sine and cosine af *;Test;'" degrees:"

7218 Print * sine = ";S5in(Test)

728 Print © cosine = Cos(Test)

730 Print " [look at the number you rewewberedl”

748 Print :Print "hit tor next partle";

750 While Peek(Console)&Start:Endwhile

768 Graphics 9

770 Test=Clog(ie®)

780 Print “The cowmmon (base 183 log of 168 is ";Test
790 Test=LoglTest)

868 Print :Print '"Khich has natural log of ";Test

816 Test=Exp(Test)

820 Print :Print '"'e’ is the base of the natural logs,"
830 Print ' and e to that power is ";Test

846 Print :Print * [which is pretty darn close to 21"
850 Print :Print “Hit any key to continue...";

860 Get #1,Key

878 Graphics ©

880 Print :Print "Now lets flip some coins, using that"
890 Print * wvalue as 1 greater than the maxiwur"

96@ Print " pseudo-randowm value we want:“;Print

910 Count=8

920 Khile Abs(Count) (3

938 If Randon(Test):Count=Count#i:Print ," Heads"
940 For Y=12 7o 8 Step -©.2:50und B8,18,2,V:Hext V
958 Else :Count=Count-1i:Print ,"EETHEE"

968 For U=15 To @ Step -9.25:5Sound 8,86,12,V:Next ¥
976 Endif

980 Endwhile

996 If Count)@:Print * [Heads won 1°

1668 Else :Print " f Tails won 1°

1918 Endif

BASIC XE Reference Manual

Page 105

Space For Your Notes Arithmetic Functions

Space For Your Notes

Page 106 BASIC XE Reference Manual

Trigonometric Functions DEG/RAD
COS, SIN, ATN

Trigonometic Functions

Discussed in this chapter are the trigonometic functions COS, SIN, and ATN, and
the statements DEG and RAD. Also included is a table that shows you how to get
other trascendental trig functions using the ones provided.

DEG / RAD

Format: DEG
RAD

These two statements allow you to specify whether the angles used in the trig
functions are in DEGrees or RADians. Note: BASIC XE defaults to radians. Also,
all trig functions following a DEG or RAD are performed using that angle
measurement until the mode is changed by another RAD or DEG, respectively.

f COS

Format: COS(aexp)
Example: 100 PRINT COS(0)

COS returns the cosine of aexp. The operation is done in radians or degrees,
dependent upon whether DEG or RAD has been most recently used.
f SIN

Format: SIN(aexp)
Example: 100 X=SIN(0)

The SIN function returns the sine of aexp. The operation is done in degrees or
radians, dependent upon whether DEG or RAD has been most recently used.
f ATN

Format : ATN(aexp)
Example: 100 X=ATN(1)

ATN returns the arctangent (Tan'l) of aexp. The operation {s done in degrees or
radians, dependent upon whether DEG or RAD has been most recently used.

BASIC XE Reference Manual Page 107

A Table of Derived Functions Trigonometric Functions

A Table of Derived Functions

The following table lists some of the trigonometric and hyperbolic functions you
can derive from the arithmetic and trigonometric functions available in BASIC XE,
The term "x" is the value on which you wish to perform the derived function, and is
simply an aexp. Also, you will see "C" in some of the functions. This is a constant
dependent upon whether the angles are measured in degrees or radians. C=90 in
DEGree mode, and C=1.57079633 (pi/2) in RADian mode.

Trigonometric Function Derivation

Tangent SIN(x)/C0S(x)

Cotangent COS (x) /SIN(x)

Secant 1/C0S(x)

Cosecant 1/SIN(x)

ArcSine (Sin71) ATN(x/SOR(1-x"2))

ArcCosine (Cos™1) ~ATN(x/SOR(1-x"2))+C
ArcCotangent (Cot™1) ATN(x)+C

ArcSecant (Sec™1) ATN(SQR(x"2-1))+(SGN(x-1)*C)
ArcCosecant (Csc™1) ATN(1/SQR(x"2-1))+(SGN(x~1)*C)
Hyperbolic Function Derivation

SineH (EXP(x)-EXP(-x))/2

CosineH (EXP(x)+EXP(-x))/2

TangentH -EXP(-x) /(EXP(x)+EXP(-x))*2+1
CotangentH EXP(-x) /(EXP(x)-EXP(-x))*2+1
SecantH 2/(FXP(x)+EXP(-x))

CosecantH 2/(EXP(x)-EXP(-x))

ArcSineH (SinH™1) LOG(x+SOR(x"2+1))

ArcCosineH (CosH™1) LOG(x+SOR(x*2-1))

ArcTangentH (TanH ™) LOG((1+x)/(1-x))/2
ArcCotangentH (CotH™1) LOG((x+1)/(x-1))/2
ArcSecantH (SecR™ 1) LOG((SOR(I-XA2)+11/X)
ArcCosecantH (CseH™!) LOG((SGN(x)*SOR(x"‘2+1)+1)/x)

Page 108 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines GOSUB
RETURN

BASIC XE and Machine Language Subroutines

A subroutine is simply a piece of a program that accomplishes a single task. This
means that a program is really just a bunch of subroutines strung together. But
what if you want to execute the same subroutine a bunch of times? You could
type it in every time you want to use it, but that could mean a lot of boring typing.
The solution is to use one of BASIC XE's special subroutine calls. They all allow
you to write a subroutine once, and then have it get executed several times in
different parts of your program,

How you get a subroutine executed (i.e., how you call a subroutine) depends upon
the type of subroutine you are using. The GOSUB subroutine structure lets you
call a BASIC subroutine by line number, the USR function lets you call a machine
language subroutine by address, and PROCEDURE allows you to call a BASIC
subroutine by name! Since each of these subroutine structures is different, they
are discussed in depth in separate sections, starting with the easiest to
understand, GOSUB.

GOSUB (G0S.)
Format: GOSUB 1ineno

GOSUB allows you to 'call' an unnamed subroutine written in BASIC XF.
lineno specifies the starting line number of the subroutine. A GOSUB subroutine
must end with a RETURN or EXIT (if you use LOCAL avars within the subroutine)
so that program execution may continue with the statement after the GOSUB.

To prevent accidental triggering of a subroutine whose code follows the main
program, place an END statement between the end of the program and the start of
the subroutine.

Caution: Like the FOR and WHILE statements, GOSUB uses the program stack to
save its return lineno. If the subroutine is not allowed to complete normally (e.g.,
you exit via a GOTO) the return lineno must be POPped off the stack or it will
cause an error. Also, if youuse LOCAL avars within a GOSUB subroutine and do
not exit via EXIT, you must POP the previous avar values off the stack yourself.

RETURN (RET.)

Format: 1ineno RETURN

RETURN is used to exit a GOSUB subroutine that does not contain LOCAL avars.
If the subroutine does use LOCAL, you must end it with an EXIT.

When you RETURN from a GOSUB, program execution continues at the statement
after the GOSUB call.

BASIC XE Reference Manual Page 109

Introducing PROCEDURE and BASIC XE and Machine Language Subroutines
its Related Statements

Introducing PROCEDURE and its Related Statements

Before describing the individual statements used to create and call named
subroutines, we present an introduction to them because they are interdependent,
and we felt that having a small but effective demonstration of their use would
make it easier to understand the later definitions.

If you have programmed at all in any dialect of BASIC, you have used the
GOSUB...RETURN construction. For example, you might see a program like the
following (This program is for demonstration purposes only, but it is a fairly
amusing little thing to spring on an unsuspecting friend):

20 Value=1i8@

J@ Hin=18:Max=90:Gosub 160

48 Resulti=Hur

58 Min=i8¥Value:Max=9e#Value:Gosub 160

68 Result2=Numr

78 If Result2)Value#Resulti Then 98

88 Print "You appear to be conservative":End

98 Print “You seew ready to take risks":End

180 Rem "The Subroutine®

118 Print :Print **Please give we 3 number between'
120 Print HWin;*™ and *;Nax;

130 Input *, inclusive) '",Nun

140 If Numd=Hin And Nun{=Hax Then Return

158 Inverse :Print "Can’'t you read? That number is"
1686 Print ** out of the range I gave you, ':Norwmal
17@ Goto 180

In a small program like this one, the GOSUB may be just fine. As programs get
larger, though, lines like GOSUB 3250 become less and less meaningful. Atari
BASIC (and thus BASIC XF) allows you to do something like this:

10 Let Getinrange=168
28 Value=1600
380 Min=10:Max=9%8:Gosub Getinrange

By giving a name to the subroutine, we can make our code more readable. A
disadvantage to this method is that BASIC XE (in common with Atari RASIC)
allows only 128 unique variable names. Using a variable name as a subroutine
name diminishes the pool of available names. This, then, is the first advantage of
BASIC XE's new procedures: we use string constant to name them, so we need
waste no variable names! Look at the listing opposite -

Page 110 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines Introducing PROCEDURE and
its Related Statements

20 Temp=1060

30 Call ""Get In Range™ Using 10,98 To Resulti

$8 Call "Get In Range™ Using 10¥Tewmp,90%Tenp To Result2
70 If Result2{Tempi#Resulti:TypeS="conservative"

80 Else 1TypeS$S="a risk taker"

90 Endif

95 Print Using "You seenm to be XANAANANAXKA/.",TypeS:End
180 Procedure "Get In Range' Using Min,Max

110 Local Temp:Tewnp=ie+30

120 Mhile Temp{Hin Or Tewp)Hax

130 If Tenp{>ie+90:Print

140 Inverse :Print “Can't you read? That number is"
150 Print " out of the range I gave you. “:Mormal
160 Endif

170 Print :Print “Please give ®me a nuwber between"
180 Print Min;" and “;Max;

198 Input *, inclusive) “,Tenp

280 Endwhile
210 Exit Tewp

Confused? Not too surprising. Let's take a look at the new lines a step at a time.
First, in line 30, note the CALL to the PROCEDURE named "Get In Range". See
how clear accessing this subroutine is, since we can use any characters we like in
the name string. That's pretty easy, right?

But what about the USING that appears in both the PROCEDURE and
CALL statements? In line 30, we are 'using' values of 10 and 90. But in line 100,
we are 'using' the variables Min and Max. Isn't that neat? We didn't have to
assign the values 10 and 90 to Min and Max before we called the subroutine:
CALL does the work for us! This is called 'passing parameters' to a procedure.

It gets better. Notice the EXIT statement of line 210, It allows the procedure to
return a value (the contents of Temp) to the CALL. The value is placed into the
varlable that follows the TO in the CALL statement (Resultl, in this case). That's
reasonable, right? If you can 'pass' parameter values, you should be able to
'return’ parameter values. But doesn't using the variable Temp in the procedure
subroutine wreak havoc on its later use in the main program (e.g., in line 50)?

Ah, but there's line 110, with its deceptively simple-looking LOCAL Temp state-
ment. By using it we have created a 'private' copy of Temp for use in the
procedure. Any changes to Temp between the LOCAL and the EXIT won't affect
its value in the rest of the program. Wow!

The example we just worked through uses all of the new procedure-oriented
statements: PROCEDURE, CALL, and EXIT. By no means, though, did we use all
of the capabilities of these statements.

BASIC XE Reference Manual Page 111

PROCEDURE BASIC XE and Machine Language Subroutines

PROCEDURE (PROC.)

Format: PROCEDURE pname [USING rvarl [,rvar2...]]

Examples: 1000 PROCEDURE "Calculate Pay" USING Hours,Rate,!Taxtable()
387 PROCEDURE "Print Msg" USING !Msg$
4040 PROCEDURE "Quit"

Note: if rvar is an mvar, svar, or savar, it must be preceded by an exclamation
point (1). See rvar in the glossary for more info.

The PROCEDURE statement is the nucleus around which named subroutines in
BASIC XE are built. It defines the beginning of a subroutine which will be
terminated by EXIT, and executed via CALL.

pname is the name of the PROCEDURE, and is simply a valid string constant. In
the examples above you can see that spaces have been used in the pnames to add
clarity to the program. As a matter of good programming style, you use names
that describe what the PROCEDURE does, shortening them only if you begin to
run out of memory.

When you CALL a PROCEDURE, the return lineno is pushed onto the BASIC XE
stack so that execution can continue with the statement following the CALL when
the PROCEDURE is done.

If you pass parameters to the PROCEDURE (via USING), CALL will push the
current 'values' of rvarl, rvar2,... onto the stack, then put the pexpl,
pexp2,... 'values' (see CALL) into the receiving variables, and finally pass control
to the PROCEDURE. This is a fairly straightforward process when the rvars are
avars, because the 'values' pushed onto the stack are simply numeric constants.
Take the following set of statements as an example:

18 Junk=20

28 Call "Test"™ Using 1217

38 Print Junk

48 End

7@ Procedure "Test* lsing Junk
80 Print Junk

90 Exit

In this example, when the PROCEDURE named "Test" at line 70 is CALLed, the
current value of the rvar Junk (20, as assigned in line 10) is pushed on the stack.
Then the value of the pexp (12*17, or 204) is copied into Junk. Any subsequent
references to Junk within the PROCEDURE will find that it contains this new
value. For example, the PRINT on line 80 will display the value 408. When the
EXIT on line 90 is executed, it will restore Junk to its prior value of 20, thus the
PRINT on line 30 will display the value 20.

All that this means is that USING (when used in conjunction with CALL and
PROCEDURE) does an implicit LOCAL. The purpose of this might not be
perfectly clear. Thanks to the implicit LOCAL, we can reuse the variable name
Junk in our procedure and so conserve on names (remember, we are allowed only
128) without worrying about changing it within the procedure. The second
advantage is more difficult to see from this simplistic example: we are able to pass
values into the procedure without knowing what variable names are used within it.

Page 112 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines PROCEDURE

The example in the previous section shows this feature to some advantage, and
demonstrates how the resultant code can be both smaller and more readable.

When the rvars are not avars (i.e. they're mvars, svars, or savars), the methodology
is the same, but the results are more complex. The difficulty lies in understanding
just what the 'value' that gets pushed on the stack is. A journey inside BASIC XE
is required to answer this question. In BASIC XE the value of any variable is the
contents of its entry in the Variable Value Table. This table reserves eight (8)
bytes per variable - a flag byte, the variable's number (0..127), and six bytes of
'information'.

For simple avars, the 'information' is the numeric value of the variable. For svars,
savars, and mvars, the flag byte indicates that the 'information' is the address and
characteristics of the actual data. For example, an svar needs information about
its address, its DIM length, and its current LEN length. The string data itself is
located at the given address. The 'information' for both mvars and savars consists
of an address and two DIMensions.

Thus, when CALL pushes the 'value' of a rvar that's a svar, savar, or mvar on the
stack, it is pushing this special information. Similarly, when CALL copies a pexp
that's a svar, savar, or mvar into one of these types of rvars, it is not copying the
actual string or array. Instead, it is copying the special information. This is the
reason that rvar and pexp require the ! prefix when they refer to these types of
variables. Consider this sequence:

18 Fun$="Swimrning is fun.":RS="Right?"

20 call "What Fun" Using !'Fun$

3@ Print Fun$,H$S

48 End

58 Rer "The Procedure®

60 Procedure "What Fun"™ Using !K$

78 Print Fun$,X$

80 ®S$(1,5)="Laugh"

90 Exit

Hopefully, you will actually try this little program. If so, you will find that line 70
shows that, as we have described above, the 'value' of Fun$ has been copied into
X$. The PRINT in line 70 will display

Swinning is fun. Swinnwing is fun.

The real surprise comes when the PRINT in line 30 is executed (following the
successful EXIT in line 90). The resultant display is

Laughing is fun. Right?

Do you see why? If the 'value' of Fun$ is copied to X$, then the address of
Fun$ is now in X8's entry in the Variable Value Table. Thus, any change we make
to X$ affects affects the contents of Fun$. Complicated, yes?

A similar action place takes place when a savar or mvar is passed as a parameter -

changes to the rvar within the PROCEDURE will affect the pexp variable in the
CALL.

Technical Note: in computer lingo, avars passed to a procedure via a 'call by
value', while the other types of variables are passed via a 'call by reference'.

BASIC XE Reference Manual Page 113

BASIC XE and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Notes and Warnings Regarding PROCEDURE

Note: BASIC XF insists that paired pexps and rvars be of the same type. For
example, the following will cause error 24 ("USING Type Mismatch"):

408 Call "Oh Wo!"™ Using 33
750 Procedure "Oh No!"™ lising !a$

Note: BASIC XE does not make sure that you have the same number of rvars as
pexps ina CALL to a PROCEDRE. If a CALL does pass too many pexps, the extra
ones are ignored. If it passes too few, a value of zero is assigned to all remaining
rvars parameters. This, in turn, can cause a type mismatch, since only avars may
receive a numeric value. Exception: if the CALL passes no parameters, RBASIC XE
does nothing at all to the parameter passing area. This is on purpose, since passing
parameters takes time. Thus, even a PROCEDURE expecting only numeric
parameter(s) may report a mismatch error, since it attempts to obtain those
parameters from the miscellaneous data left in the parameter area. Generally, we
recommend passing the correct number of parameters unless you have a specific
purpose which can use the "default" feature to a real advantage.

Note: you must be careful when changing the value of a svar passed as a
parameter. Recall that the length of a svar is found in its Variable Value Table
entry, and that the entry is copied intact to the PROCEDURE's rvar. If you then
change the length of the rvar string within the procedure, it will indeed change
the rvar's length in the table. However, when you EXIT, the rvar entry is
not automatically copied back to the pexp used in the CALL! This can produce
some bizarre results., To demonstrate - modify line 80 of the last example program
to read

88 H$="Laugh":Print K$

Not surprisingly, the new PRINT in line 80 shows us that the contents of X$ are
simply "Laugh". However, look at the display resulting from line 30:

Laughing is fun. Right?

Do you see the problem? Changing X$ in line 80 changed the contents of Fun$,
but it did not change the length of Fun$. Presumably, this could be a feature
under the right circumstances, but there are stranger consequences possible. For
example, try changing line 80 to read

80 KS=HRH™
Now line 30's PRINT will display
HRERuing is fun. Right?

which is almost surely not we wanted.

One solution to this situation is simply to avoid changing a passed string within a
procedure block. This may not be satisfactory, though, so we have provided
another mechanism which you can use to circumvent the problem. Change lines 20
and 90 in the original program to read

2@ Call "Mhat Fun® Using !Fun$ To !Fun$
98 Exit IRS

Using the TO guarantees that the complete new "value" of X$ will be copied back
to Fun$§. On this same topic, you may be relieved to know that this difficulty with
length does not exist with mvars or savars.

Page 114 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Warning: one way to get in real trouble with either strings or arrays is to pass one
back (via EXIT) which was not passed in (via CALL). Fxamine the following
program excerpt:

180 Call “Oops" To !A$

118 Call “"Oops" To !BS

120 Print A%$,BS:End

388 Procedure ‘'Oops'

316 Input "sze sorething) “,Line$

328 Exit !Line

If you type in and RUN this program, giving different responses when you are
prompted, you will be surprised at the results of the PRINT of line 120: A$ and
B$ will be identical (up to the length of the shorter), taking on the value of the
second INPUT. If you recall our discussion of what actually gets passed when a
string or array is involved, this seemingly bizarre result can be explained.

When Line$ gets passed back, what is actually transferred is its Variable Value
Table entry, first to A$, and then to B$. But the table entry consists (among other
things) of LINE$'s address. Thus you end up with all three variables pointing to
the same piece of memory!

The proper solution is to pass a string both in via USING and back out via EXIT.
For savars and mvars, you need only pass the value in, since anything the
PROCEDURE does these variable types is properly reflected in the original
variable.

The only way you can get in trouble with arrays is if you pass an unDIMensioned
array to a procedure which then DIMensions it. Unless you pass back the "value"
via EXIT (similar to the fix for strings just given above), the space DIMensioned
within the procedure is lost, since no variable's entry will refer to it after the
EXIT is executed.

Warning: PROCEDURE must be the first statement on a line. CALL cannot find a
PROCEDURE if isnot at the beginning of a line. Strange and wondrous (and
woefully unpredictable) things can happen if you violate this rule. Similarly, you
should never allow a program to "fall through" to a PROCEDURE. Always make
sure that the program immediately preceding each PROCEDURE finishes with a
GOTO, STOP, END, RETURN, or EXIT. We recommend grouping all procedures at
one spot in your program, preceded by an END statement.

BASIC XE Reference Manual Page 115

EXIT BASIC XE and Machine Language Subroutines

EXIT

Format : EXIT [pexpl [,pexp2...1]

Examples: 390 EXIT 10*Maxvalue
799 EXIT Flag,!Names$
24990 EXIT !Inverse(),Rows,Colunns
835 EXIT

Note: if pexp is an mvar, svar, or savar, it must be preceded by an exclamation
point (1). See pexp in the glossary for more more info.

If you have been reading this manual front to back you have encountered several
examples of the statement EXIT by now. If youhave not, we refer you to the
three previous sections for some illustrative examples.

EXIT performs the following three functions:

1) If there are any variables on the stack (i.e., if you passed parameters or used
LOCAL) EXIT restores them to their proper places in the Variable Value Table.

2) If there are any pexps after the EXIT, it places them into the rvars following
the TO in the CALL statement.

3) EXIT checks to see whether the current subroutine was invoked via CALL or
GOSUB. If it wasa GOSUB, EXIT simulates the action of a RETURN.

Warning: no error will result if an EXIT statement tries to pass pexps back to a
GOSUB. Instead, they are simply ignored. Similarly, if you pass back too many
pexps to a CALL, the excess ones will be ignored. This design allows a single
PROCEDURE to serve more than one function, returning more values to some
CALLers than to others. Remember, though, that all rvars expected by the
TO portion of a CALL statement must be matched by type by the pexps of EXIT.

Warning: because POP is smart enough to pop variable 'values' off the stack, you
can leave subroutines with LOCAL avars and/or parameters without using EXIT.
You must, however, make sure that you POP all variables off the stack, as well as
POPping the return lineno. -

Page 116 BASIC XB Reference Manual

BASIC XE and Machine Language Subroutines CALL

CALL

Format: CALL cname [USING pexpll,pexp2...1] [TO rvar[,rvar...]]
Exemples: 10 CALL "Test"

720 CALL "Totals" USING !Values() TO Sum

800 CALL "Get Num" TO Number

100 CALL Proc$ USING 7,!'A$ TO Result

Note: if rvar or pexp is an mvar, svar, or savar, it must be preceded by an
exclamation point (!). See rvar and pexp in the glossary for more more info.

The CALL statement has been both discussed and demonstrated earlier in this
chapter. In this section, then, we will not dwell on such things as the mechanics of
parameter passing. Rather we will discuss the subtleties of the CALL statement
itself,

First, unlike a PROCEDURE statement, the name specified bya CALL may be a
svar instead of being a string constant (see the last of the above example lines).
However, you have no other choice of format than that shown. You may use
neither a substring nor an element of a string array as a CALLed name, This is not
an onerous restriction, though, since the great bulk of your CALLs will probably
be made with string constants. For those rare occasions when you wish to choose
one of several PROCEDURESs based on the value of some index, may we suggest a
program format similar to the following:

38 Input “Give me an Index) *,Index
40 Name$=Proc$(Index;):Call Hawme$

Note: the name that you CALL with (whether constant or variable) must match
exactly that given in a PROCEDURE statement. All characters are considered in
the match, with upper case, lower case, and inverse video all distinct.

Caution: we remind you of the possible problem associated with using a svar as a
pexp: if its length is modified in the procedure, the change is not reflected in the
svar unless TO is used. Similarly, any array that's not DIMensioned at the time of
the CALL should receive the same treatment.

Technical Note: the number of levels youmay nest CALLs is limited only by the
amount of FREe memory left for stack use. Like GOSUB and WHILE, CALL uses
four (4) bytes of stack space, and each parameter passed occupies 12 bytes.

Note: CALLs are slow in comparison to GOSUB lineno in FAST mode. However,
when compared to normal GOSUBSs In slow mode, they may actually be just a bit
faster if they don't pass parameters. Parameter passing can, indeed, slow things
down remarkably. But, when you compare it to the method of doing several assign-
ments before a GOSUB, followed by one or more afterward, it may actually save
time in some situations.

BASIC XE Reference Manual Page 117

USR BASIC XFE and Machine Language Subroutines

f USR

Format : USR(aexpl[,aexp2...])
Exsmple: 100 RES=USR(ADDR,A*?2)

The USR function returns the result of a machine-language subroutine.
aexpl must be an integer, and is used as the address of the machine language
routine to be performed. The input arguments aexp2, aexp3,... are optional, and
are used as parameters to the machine language subroutine. These aexps must be
between 0 and 65535, and will be rounded to the nearest positive integer if they
are fractional. They are then pushed on the hardware stack in the reverse of the
order given, so the machine language program may then pull them in proper
forward order. Additionally, a one byte count of parameters is pushed onto the
stack last, and must be popped by the USR routine. This may be changed using the
SET 8,aexp.

Also, if all arguments are properly pulled from the stack, then the USR routine
may return to BASIC XE simply by executing an RTS instruction. Finally, the
routine may return a single 16-bit value to BASIC XE (as the "value" of the
function) by placing a result in FRO and FRO+1 ($D4 and $D5) before returning.

Note: see ADR if your machine language subroutine is in a string, as this might be
problematic if you are in EXTENDed mode.

The following example uses a USR routine to ASL a number (the argument to the
USR routine) and then return that value to BASIC XE.

BASIC XF statement:
Kasl=Usr($680,K)

USR routine at $680:

iee PLA ;Get &8 of paraneters
110 CHP 31 ;If not 1 EKRIT

128 BHE EHND

138 PLA H,

140 TAR ;5ave it

158 PLA ;LS8

166 ASL & JASL LSB

170 5Ta $p4 ;5ave it

160 THA ;Get MSB

196 ROL A JROL it to get carry
200 57Ta $05 ;j5ave it

210 END RTS

Page 118 BASIC XE Reference Manual

ATASCII Characters and Codes

Appendix A

NORMAL Video

NORMAL Video

’ FT CLEAR

@ o
< w
of = — e | @
s e e
-

[n Ll Ln I
@l X ITXTXXT =X Wy,
X| OCOOQUWUOT~DX I Z00L0CENFIODIX>-NOVONNOU SO UD e —-=~EcOQoL W+ 3D 3 x 2 NOWWWIW

x
%— ACOOAWUL O~ X IZZ00CENIDIX> N m< @00 UuUD LY OC =X~ ECOATLUVw IDIXANGR=Iwa

0123456789ABCDEF0]23456789%BCDEF01234567B9ABCD LO~NMTNONORIMOOWW
o] TETTTTTTTTTTTTTTINNNNNNRNDNININBNININGVVYOVVOVVOGOVOVVVONNNNNNNNNNNNNNNN
Tl AOPARRP PR R R APRORR NN AR ARV AAAPARRRAPRARPRP R AR R RPA AR PR AP APRRAP AR ARARRRA L AAN
U] TINONDOAD—=NOTINONDOD—=NNTIDONDBOD—~NOTINONDAD—~NMNTINONDOAS—NMTUION DD~ NMTHION
@l VOVOVVOVVNNANNNNNNNOODBODDDDORANRCRRRRARCODOD DD DD D DD i vt v mr v vt v = NN NN N NN
o 3 o S Ty T e P e Tt ot T Pt Pt] Y P Ty Pt et e St g W
L T
Y -4
x LLLLM
P ~CMOOWL. (X JKLHNUPQRSTUUUXYZ%WWWW SR AW e - &
[N —
-~ LOOOOW === b= == = -
[7.] [O S U NS NS AN N S T RS DR O O O N A O D DU D Ol bbb bbbl w w
X EE X EEEEEOQOOQ O et ey — —
ol b e e e e b e e b e e e b e e e e A T T T T T T T T x x
X| OOLLLLLOLLLLLOLLLLLLLOLLLLOWWWWWONOVNVNNOONONX + =1 *\NO~NOTINONDOUY =~ || AL
@
[(%]
%— ® D r NN g el (et tjde l Pimdrere e Wu.- TANYN wAX+ o] N\ O NOTUON OO oo sonr || AN
0
* 8123456789ABCDEF0123456789ABCDEFO]23456789ABC0EF0123456789MBCDEF
V| COPPODOEDDDDDDD — NONNNNNNNNNNNNNNNMOMOMOOOOMOOMEOHOM0RMm
x ””‘3""““3”‘35‘3”"‘3’3‘3"“"3"3""5”3’53’""”"“
D= NOTNONDOD—~NOTINONDOAD— NOTINONDCOAD—=NMTNON DD~ NOTIION OO D —NMT I ON DO D =M
N e e v e e NN AN NN NN NNOOEOOCOOMOOOTTITTTITTTTINNNININNINNINKN 0000

Page A-1

BASIC XE Reference Manual

Appendix A

ATASCII Characters and Codes

INVERSE Video

INVERSE Video

e
W
- J
- L ERz

o] ~ o gl)
i Cihihg ooz
ol = TETTEE IO
H OCODOAQUWULOT =X JEZ0A0XNEIDODIX>-NOUMOVNO SO UD o OC -~ ECO0QADL N+ 3D 3IXANOHWOO

W_@mﬁﬂmEﬁmmﬂumﬂﬁmnﬂnﬂsmmmmmmzmgmg!Damﬂﬂﬂﬂmmﬂnﬂmmmmmnﬂsmmmzmmﬂn“muu

x 8123456789MBCDEF8123456789 BCDEFGIZ34567B9ABCDEF8123456789ABCDEF
ul OOOOOVOLLLLCOLOLOCACOCaOOQOn QOO LW W LWL W W LW W i b el bl el b bl b Lol
x “335$$3‘$335$$$$5&v““‘&v""(«‘3‘33‘3"’3"33.?35333"3“««33’3“‘
NOTINONDOS —~NMNTINONBOB—~NOTINON DS —NOTINONDORD—NMTHIONOONS—~NMTIIONDOND—NMTIN
9999999988888088981111111111222222222233333333334444444444555555
Sl AR R I L R R R AR AR RN RN NN R e 0 0 0 O O O 0 O N 0 O 0 0 0 0 0 0 010 0 £ 0 £ 0 0 £ £ £ € 4 4 €
Wi
o
[Ivpe]
TR 14
ENBAM
Q=T a2 TAN YN o o
~COOQWULOT~DOX IJTZO00OXxW DO 3IX>N [
@ = W - =
3 [S N DU A N O O O Y U R D O S N D R R U B DS DU (R U PPN | I TR T T OO T T TR TR T L w
O] XX XX E X XL EER _ mere O L e e e e e — —
el R e e e e e e e 2 T T - LA T T T T T T p =f p od
- LLLLLOLLLLLOLLLLOLLLLLLOLLL SSCSSSSSSSSSSS*os_./81234567898:(:)8
PN FOLQOQ
2] 2222222222222222222222222220090922222222222222222222222222222222
DEY s 1t 1 ey 3y ot g Pt g B ey e et P ey (g g B Py P Py D e B et Pt et 0 L LU LS LY et ey e e et e 5 Gy) B e e Py P g (e g B e P o Bt Pt g g B By P g Pt et P
= 5 .
I SmTRSS o, B o0 HE LIRS SR I-"-ln.-wnﬂﬂﬂ'gm".ﬁgannuﬂﬂﬂﬂggﬂéﬂ_ﬂﬂ
* 8123456789%BCDEF81234567B9ABCDEF0123456739 BCDEF0123456?89MBCDEF
af 00000000 WS W® D 888889999999999999999AAMAAAMAMQ AMMAABBBBBBBBBB mommo
PAARPAR PR RPAARAR PR AR R PAPARRAR LR RRARRARARARPRARNRARARARRRAR PAPAA AR AP AP RARRRAS
DOD—NNTINONDOD—NMITINON DD —NOITNONDOAD—~NMTNON DD ~NOTINONDOD = NNIT I ON DD —
2 NNOOOOOOOOOMTTTTTTITTT TNNINNDNNINIINOOVOVVOVVOVVCONANNNNNNNNDODOCODDDRDDONN
—— - —— v —— ———— ——— —— - ——— py

BASIC XE Reference Manual

Page A-2

Appendix B BASIC XE Memory Map
$0000 - LOMEM

BASIC XE Memory Map

Below you will find a table containing the low memory locations used by
BASIC XE. In the descriptions you will find the abbreviations 'AtB' and 'BXFE'.
They stand for 'Atari BASIC' and 'BASIC XE', respectively.

Most of these locations are documented only because they are used to delimit
areas in the memory maps on the following pages. The only locations that might be
of use to you are LOMEM, STOPLN, ERRSAV, and PTABW. These, however, are
assoclated with BASIC XE commands as follows, so you need never use PEEK or
POKE:

LOMEM LOMEM
STOPLN ERR(1)
ERRSAV ERR(0)
PTABW SET 1,aexp

Note: unless otherwise specified, all zero page locations $80 - $FF are used by
BASIC XE.

Location(s) Label Usage
$E-$F APPMHI System pointer to free memory.
$20-32F Z10CB Temporary storage for Floating Point routines.
$43-%849 FMSZPG Temporary storage for Floating Point routines.
$80, %81 LOMEM Low memory pointer.
$82,883 ° VNTP Variable name table pointer.
$84 , S8R5 VNTD Pointer to the end of variable name table plus one.
$86,887 VVTP Variable value table pointer.
$88,%89 STMTAB Statement table pointer,
$8A, 38R STMCUR Current statement pointer.
%8C, $8D STARP mvar, svar, and savar value table pointer.
$8E, $8F RUNSTK Runtime stack pointer.
$90, %91 MFMTOP High mamory pointer.
$BA, $BB STOPLN Line number at which the program stopped.

$C3 FRRSAV The number of the most recent error.

%C9 PTABW Number of columns between tab stops.

$CB-8D1 ----- Unused by BXE!!

$D4-3D9 FRO Floating point register 0.

SE0-SES FR1 Floating point register 1.
$480-857F ----- Used by BXE for various purposes. Caution: some

AtB programs use this area during RUN, BXE pro-
grans that use only AtR camands can do this also,
but those that take advantage of the new commands
may not use this space.

$580-%67F ----- Normally unused by BXE, but INPUT or ENTER from an
external device can wipe it out.

$680-$6FF ----- Unused by BXE!! We suggest that you use this area
for your USR routines.

$700-LOMEM ----- DOS and any other device handlers (R:, etc.) reside

here. The LOMEM statement can change the size of
this space.

BASIC XE Reference Manual Page B-1

BASIC XE Memory Map
Low Memory - Standard

Appendix B

Low Memory - Standard

The diagrams on this and the facing page show how BASIC XE uses memory
between LOMEM and the start of cartridge memory ($A000). The diagram on this
page shows how memory is used if you do not use the EXTEND statement, and the
one opposite shows the memory configuration in EXTENDed mode.

$AB060 font
_GR,_RaM_]
PMG. RAM
3 o
$9688 + -
[FRE(®)
3 d
480608 < 4
PN TIT] § vy —
BAS{C XE
4 gn ime o
tack
RUNSTK p===mm e e
mvar,
$76868 <+
! svar,
savar,
Space
STARP p---—m=——mmmm
$4868 <+ o
4 L
" L
Your
$5860 +
BASIC XE
$40008 + 4
[Program i
4 o
$3808 + 4
i YT
WTP pmm=mmmmmm e,
var Names
UNTP bemm o2

LOMEM

Page B-2

BASIC XE Reference Manual

Appendix B BASIC XE Memory Map
Low Memory - EXTENDed

Low Memory - EXTENDed

RAM
$ABB8
GR. RAM
PMG. RAM |
= = o e o e L
4 A L
$9888 <+ L
$8000 4 The Extended RAM in a 138XE
] VN 4 VN
3 3 = C- L.
o FRE(G) L J j- C 3 L
$7008 - 4 4 4 -
> e = = = o o o L FRE(I) - L
$4808 <+ + 4 & o
L L3 3 o L
Your 1
v
e T jc XE | Basic Xe 1 1]
45688 < Bgn ime 4 4 4 o
RUNSTK p====— = - - L'd 9
Program
o - ﬁn o
[muar T T T]
$4000 + !
svar, Bank 8 Bank 1 Bank 2 Bank 3
L
savar
o
Space
4
$3660 < -
STARP p----- G-;--——‘
| var
wre boarY alues
S _'é):(g_é_;';i&__ ¢ $300 byte Buff
LoMed L-ZXE_B uffer | yte Buffer.

BASIC XE Reference Manual Page B-3

BASIC XE Memory Map Appendix B
High Memory

High Memory

The diagram on this page shows the memory configuration from the start of
cartridge memory to $FFFF (the end of address space). Those areas labelled
'BASIC XE Extensions' are used by BASIC XE only when you have booted using the
disk extensions. -

ROM RAM
L 4 4
: Atari - Reserved
$Fa0e 4+ Operating | by

System [Atari

Standard Character Sets
Atari’s BASIC XE
Floating Pt.| Extensions

$E000

- GT1A, POKEY, and Pl1A 4

$D0B06 -
International Char, Set
Atari
F ting T BASIC XE 4
eratin
z X 91 paM .
ste
$Co00 i
Unusable
r - £ L
[atari | BASIC XE | BASIC XE
$BBBB <+ 4 4 -
BASIC Extensions Cartridge
o - - L
L 4 4 -
$AB0B6

Page B-4 BASIC XE Reference Manual

Appendix C Compatability with Atari BASIC

Compatability with Atari BASIC

Generally, BASIC XFE is totally compatable with Atari BASIC. Virtually all
programs you have written in Atari BASIC will execute properly under BASIC XE.
However, there are a few subtle differences between the two BASICs, and some of
these can affect whether a program will load and run or not. This appendix
presents a list of known differences, but we can't guarantee that it covers all the
differences.

Variable Names

When you SAVE or CSAVE a program in Atari BASIC, and then LOAD or CLOAD it
into BASIC XE, you will never encounter a conflict in variable name usage. If,
however, you LIST a program from Atari BASIC, and try to ENTER it into
BASIC XE, you might discover that BARIC XE will not accept some lines that you
know are legal in Atari BASIC.

The reason, of course, is that BASIC XE has a much larger list of commands than
does Atari BASIC, and in neither BASIC can you start a variable name with a
command name unless you precede it with LET. To illustrate how this can create a
problem, consider this program line that's valid in Atari RASIC:

100 NUMBER=7

Because NUM is a BASIC XE statement the above line will look like

100 Wuwn Ber=7

to BASIC XE. Since your program probably doesn't have a variable named Ber, the
expression Ber=7 will evaluate to zero, thus making the original statement turn
into

100 Hum 8

which is certainly not what you intended!

In most cases variable name conflicts will result in syntax errors, but in this parti-
cular case (and a few others) the result appears valid to BASIC XE, thus creating
possibly disasterous consequences,

How can you detect and fix such problems? The easlest way is to examine a
BASIC XE LISTing of the program, and, thanks to RASIC XE's program formatter,
the discrepancies will stick out.

Remember, however, that even LET will not allow you to use function names as
variable names, so you need to change variable names that begin with (or match) a
BASIC XE function name to something else (e.g., change BUMP to BMP or VRUMP).

BASIC XE Reference Manual Page C-1

Compatability with Atari BASIC Appendix C

Programs that RUN Too Fast

One of the reasons you bought BASIC XE in the first place was probably its speed.
However, little did you realize that some of your BASIC programs (most likely
games) would RUN too fast! The only solution to this is to put delays in your
program. You can do this easily by CALLing a PROCEDURE that waits for some
time, dependent upon the value you pass it, as follows:

1888 Procedure "Mait" Using Tiwe

16480 Local Tewmp

1820 For Tewmp=1 To Tine:Next Tewp
1830 Exit

Now, just insert CALLS to this routine where you need to waste some time:
188 call “"Kait" Uising 28

Memory Conflicts

BASIC XE attempts to conform to all memory location usage published in any or all
of the following books:

Atari BASIC Reference Manual, by Atari, Inc.

De Re Atari, by Chris Crawford el alia

Mapping the Atari, from COMPUTE! Books

Master Memory Map, by Educational Software, Inc.

A few programs written by extemely knowledgeable individuals have made use of
one or more of the following unpublished facts about Atari BASIC:
1) Atari BASIC uses certain memory locations only at certain times,
2) Certain zero-page locations have special meaing to Atari BASIC, and
3) Certain subroutines internal to Atari RASIC begin at certain addresses in
the cartridge.

Obviously, we couldn't have added speed and features to BASIC XFE without adding
code and making more use of the memory reserved for BASIC, Although we kept
changes to a minimum, we can't possibly be held responsible for conflicts crested
by programs that depend use such methods to accomplish their task. They were
created specifically for use with Atari BASIC, and must remain that way.

Automatic String DIMensioning
BASIC XE will automatically DIMension strings to 40 characters for you, and this

should have no effect on your Atari BASIC programs, but, if you really want to
insure total compatibility, use SET 11,0.

Indented LISTings

When BASIC XFE LISTs a program it automatically indents control structures (FOR,
WHILE, etc.). This can be a problem if you LIST an Atari BASIC program with
extemely long lines and then try to ENTER it into BASIC XE. To solve problems
that arise from this, use SET 12,0.

Page C-2 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory

Data Space in Extended Memory

When you use BASIC XE with an Atari 130 XE computer, there are three ways to
use the "extra" 64K bytes of RAM memory which this machine gives you. Although
you can use only one of these ways at a time, the flexibility is nice and may allow
you to write some Interesting programs. You should already be familiar with two
of these ways:

1) You can use RASIC XE's EXTEND command to give yourself a 64K program
workspace without affecting a data space of 30K bytes or more, or

2) You can boot with a DOS that allows you to use this memory as a super-fast
RamDisk (Atari DOS 2.5 is a good example).

This Appendix will introduce you to the third way to use this memory.

If you don't use the memory for large programs, and if you don't use it for a
RamDisk, then BASIC ¥E allows you to use it for your own purposes. In fact,
BASIC XE has several statements and functions which were designed to help you
use this memory. If you will refer to the descriptions in this manual of the
following commands, you will find that each allows you to specify an optional bank
number:

MOVE POKE

BGET DPOKE

BPUT PEEK

DPEEK

The bank numbers that can be used with these commands are illustrated in
Appendix B. Not shown in that diagram is Bank 4, which is simply the "main"
memory from $4000 to $7FFF. BASIC XE assigns it this bank number for your
convenience, but in any of these commands "Bank 4" is assumed if no bank number
is given.

With the exception of MOVE, all of these commands can be used easily and safely

to store or retrieve data in any of the extended memory, so long as neither

BASIC XE nor DOS is trying to use the memory at the same time. For example,

you could copy a small disk file by

1) OPENIing the file with its original disk inserted,

?) using BGET to read it into one of the banks,

3) CLOSEing and reOPENing the file after inserting another disk, and

4) using BPUT to write the file from the extended bank. If the file is longer than
16K bytes, you could use 2, 2, or even all 4 banks to hold it while waiting for
the disks to be swapped.

Use of the MOVE statement requires a little more care, though. The bank number
you specify for a MOVE refers to both the source and destination addresses. Thus
a command of the form

Move $4000,85000,$200,3

would move 512 ($200) bytes from location $4000 in bank 3 to location $5000 in
bank 3. This is often exactly what you want and will probably make you gloriously
happy. But consider a command like this:

Move Adr(Goodies$),$4000,Len(Goodles$),2

This is dangerous and probably will not work!

BASIC XE Reference Manual Page D-1

Data Space in Extended Memory Appendix D

If you refer to the memory map of Appendix B again, you will note that it is
possible (or even probable) that BASIC XE will store your strings and arrays
somewhere in the address range $4000 through $7FFF in main memory. Assume,
for the moment, that the string Goodies$ is stored at address $6050. The above
MOYE command would try to move bytes from location $6050 in bank 2 to location
$4000 in bank 2, Almost certainlyﬂ)_t_ what you wanted.

How can you avoid this problem? First, always MOVE any object that is located in
main memory from $4000 to $7FFF to an intermediate location that is outside
those bounds. Then MOVE from the intermediate location to the appropriate bank.
What intermediate areas are available? If you are writing your own program from
scratch, then there are several good locations available, if you will refer to
Appendix B again. If you aren't using it for any other purpose, page 6 of memory
(3600 to $6FF) is a good spot. Note that this limits your MOVEs to 25f bytes each.
This may require a little work on your part, such as in this routine:

910 For Loc=0 To Len(X$) Step 256

920 Move Adr(X$)+Loc,$600,256

930 Move $600,$4000+Loc,256,3

940 Next Loc

(There is a flaw in the above program: if X$ is -- for example -- 10 characters
long, then the first set of MOVEs will move 246 bytes too much. If this could
cause a problem, your program would have to check for this situation and make a
shorter MOVE on the last section of each string.)

The program titled "SHOWPIC" on page D-5 shows another good location to use for
a MOVE buffer: the graphics screen memory. In this program, the screen memory
is used to actually hold pictures, but there is no reason you couldn't use excess
memory in this area (between APPMHI and HIMEM) for any purpose you choose.

To help get you started using extended memory in new ways, we here explain the
"SHOWPIC" program, step by step. As its name implies, it shows pictures. In fact,
it will show up to eight pictures in slide show fashion, and its big feature is the
speed at which it shows them.

To use the program, you need two or more picture files that have been saved in
what is known as "Micro-Jllustrator" format. The first 7680 bytes (40 bytes per
line by 192 lines) of a file in this format are simply a dump of either a
GRAPHICS 24 (which is 8+16, a full screen two color mode) or GRAPHICS 31 (a
full screen also, 15+16) screen memory. Most popular drawing programs for Atari
8-bit computers either use this format or provide a means of using it. For
example, standard Koala Pad and Atari Artist software use a condensed format,
but both allow you to produce a Micro-Illustrator file by pressing
"Control-Shift-Insert" (push the Insert key while holding down both the Control
and Shift keys). Doing this always produces a file of the name "PICTURE," so you
must go to DOS and rename the file before you save another picture on the disk in
the same way.

Since picture files in this format are large, we suggest putting the program
"SHOWPIC" on a disk with nothing but DOS and the pictures. The picture files
may use any 8-character name, but all must have the extension ".PIC" in order for
"SHOWPIC" to find them. The paragraphs that begin on the following page explain
the workings of "SHOWPIC" in some detail, and the numbers used are those of the

Page D-2 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory

lines being explained.

180 The string File$ is used only to read a line from the directory. The
string array Files$ will hold the names of up to eight files.

190 As noted above, a Micro-lllustrator picture is simply 7680 bytes
"dumped" from screen memory.

200 The states of the Start, Select, and Option keys are found by PEEKing
location $DO01F. If the Start key is pressed, the least significant bit ($01)
of the location will be zero,

240 We will read a portion of the directory of the disk in drive 1. Feel free
to change the drive number and/or the filename extension.

250 We will read in a maximum of 8 file names.

260,270 As we read in a filename, we check it. If there are fewer than 8 picture
files on the disk, we will read the line which tells how many free sectors
there are. If we find that line, we exit from the FOR loop early.

280,290 Because the directory listing format does not produce standard file

names, we must build a proper name for later use by OPEN. Again, you may
change the drive number and/or filename extension if you wish.

300,310 R'egardless of how we exit the loop, we successfully read in one fewer
than the value of the loop variable.

320 Even when youread the directory, you must close the file.

360,370 We chose a full screen black and white picture. We also chose colors
which looked good on our monitor, If you are using color pictures, change
to GRAPHICS 31 and use appropriate SETCOLORs.

380,390 We will read in only as many files as we found in the directory.

400 This one statement reads in the entire picture! Location $58 contains
address of the beginning of screen memory (i.e., the address of the byte for
POSITION 0,0). See any good Atari memory map book.

440 We put pictures 1 and 2 in bank 0, pictures 2 and 4 in bank 1, etc.

450,460 If {t's an odd-numbered picture, we put it in the lower half of the bank.
Even-numbered ones go to the top of the bank.

470 As explained above, this MOVE is safe because screen memory is located
above $7FFF. If you use a program which somehow lowers HIMEM, this
might not work!

480,490 Finish up with this file and loop for the next one.

500 At this point, all the pictures have been read in from disk and saved in
various parts of extended memory.

BASIC XE Reference Manual Page D-3

Data Space in Extended Memory Appendix D

530 Just initialization. See lines 600 through 630.

570 Remember that a WHILE loop executes so long as the expression
following WHILE is true. But a constant other than zero is always true. So
we loop until the user hits BREAK or RESET.

600-620 This is a little sneaky. Fvery time we get to line 600, Pic will be equal
to Oldpic, so the WHILE loop will execute at least once. BASIC XE's
RANDOM function conveniently chooses a valid picture number. Then we
go back up to the top of the WHILE loop to find out if we picked a different
picture. If not, we try again.

630 And this ensures that the loop of lines 600 to 620 will execute at least
once next time.

670-700 Does this code look almost the same as that in lines 440 to 470? It
should. The only difference is that now we are moving from the extended
memory into the screen memory.

740 As long as you hold the Start key down, RASIC XE will loop on this line.
Remember, the "&" symbol means "bit-wise AND," so the test here is of a
single bit in the console register.

750 The end of the "forever" loop.

Finally, a last hint of another direction to explore. Although this program used
BGET to move a picture into screen memory and then MOVEd the picture into
extended memory, you can also use BGET to read directly into extended memory.
It won't look as pretty as the files are being read in, but you could remove line 400
and change line 470 to read as follows:

470 Bget #1,Address,Picsize,Bank

The fast slide show portion of the program is unaffected, because the pictures are
still in the memory locations where it expects them. And, if you hit Break but
want to continue the show, just type in the following line:

GRAPHICS 24:G0TO 500

to use the default colors. Or add SETCOLORs before the GOTO if you wish,

Page D-4 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory
SHOWPIC Program

SHOWPIC Program

1860 Ren HHHBHHHBHHOHE

110 Remn *

120 Ren # SHOWPIC 3¢

136 Ren # #*

140 Ren HEHHHHHHBHRHE

150 Remn

160 Rem set up buffers, arrays, constants
170 Ren

180 Din Files$(8,20),File$(20)

190 Picsize=40%192

280 Console=$d@if:Start=$01

210 Ren

220 Rem find all the pictures files

23@ Rem

240 Open 21,6,06,"D1:%,PIC"

250 For Pic=1 To 8

260 Input #21,File$

270 If File$(2,2)4>" " Then Pop:Goto 368
280 Files$(Pic;3)="D1:",File$(3,18)," »
298 Files$(Pic;Find(Files$(Pic;)," ",8)3=".PIC"
380 Wext Pic

J10 Maxpic=Pic-4

320 Close 1

330 Ren

340 Ren read in all the files

356 Rewn

368 Graphics 24

370 Setcolor 2,6,08:5etcolor 4,6,0:5etcolor 41,6,8
380 For Pic=1 To Maxpic

390 Open #1,4,08,Files$(Pic;)

480 Bget #1,bpeek($58) ,Picsize

410 Rern
420 Ren wove picture into extended merory
430 Ren

440 Bank=Int({Pic-1)/2)

450 Address=5$4000

468 If Pic&1=0 Then Address=5$6000

470 Move Dpeek($58) ,Address,Picsize,Bank
480 Close #1

490 MNext Pic

500 Ren

510 Ren now sShow the pictures

520 Ren

530 01dpic=0:Pic=0

540 Ren

550 Rem we want to do this forever

560 Ren

570 Mhile 1

580 Ren be sure we don't show same one
590 Ren . twice in a row
608 Mhile Pic=01ldpic

610 Pic=Randon(i,Haxpic)

620 Endwhile
638 0ldpic=Pic

640 Ren
650 Ren nove from extended werory to screen
660 Ren

670 Bank=Int((Pic-13/2)

680 Address=$4060

696 If Pic&i=@ Then Address=$6000

700 Move Address,bpeek($58),Picsize,Bank

710 Ren
720 Rew allow user to look at one
730 Ren

740 Mhile Peek(Console)&Start=0:Endwhile
750 Endwhile

BASIC XE Reference Manual Page D-5

Data Space in Extended Memory Appendix D
Space For Your Notes

Space For Your Notes

Page D-6 BASIC XE Reference Manual

Appendix E Error Situations
Numbers 1 -9

Error Situations

Whenever something that BASIC XE wasn't expecting happens, BASIC XE will stop
whatever it's doing and give an error (unless, of course, you TRAP the error). An
explanatory message will accompany the error number if you have booted with the
extensions disk, otherwise the error number alone will be displayed. All errors
that involve BASIC XE directly have personalized error messages, but some
obscure system errors simply produce the message "(See Manual)". This are errors
like #173 (can't format disk), and occur very rarely. The "(See Manual)" does not
necessarily mean this manual, but the manual for the device or subsystem that
produces the error.

Error Screen Message and Further Description

1 BREAK key not TRAPped
While SET 0,1 was specified, the user hit the <BREAK> key. This
TRAPable error gives the BASIC XE programmer total system control.

2 Memory Full
You have used all available memory. You can't enter any more
statements, nor can you define any more variables.

3 Value Out of Range
An expression or variable evaluates to an incorrect value. For exsmple,
if a value 0-7 is required, and you use a negative number or a number
greater than 7, an error 3 will occur (e.g., SETC. 99,0,0).

4 Too Many Variables
No more variables can be defined. The maximum number of variables is
128.

5 Access Past String DIM
You tried to access a character beyond the DIMensioned length of a
string.

6 No DATA to READ
A READ statement is executed after the last adata item in the last
DATA statement has already been read,

7 Val > 32767
BASIC XE encountered a line number larger than 22767, Some other
commands (e.g., POINT) can also produce this error.

8 INPUT/READ Type Mismatch
The INPUT or READ statement did not receive the type of data
(arithmetic or string) it expected.

9 DIMensioning
Either you tried to reDIMension an already DIMensioned var, or used an
unDIMensioned variable as though it were DIMensioned.

BASIC XE Reference Manual Page E~1

Error Situations Appendix FE
Numbers 10 - 20

An expression is too complex for BASIC XE to handle. The solution is to

The floating point routines have produced a number that is either too

A NEXT avar was encountered without a corresponding FOR avar.

The progam line just entered is either longer or more complex than
BASIC XE can handle. The solution is to break the line into multiple
lines by putting fewer statements on a line, or by evaluating the

The line containing a GOSUB or FOR was deleted after it was executed
but before the RETURN or NEXT was executed. This can happen if,
while running a program, a STOP is executed after the GOSUB or FOR,
then the line containing the statement is deleted, then you type

A RETURN was encountered when execution is not in a GOSUB routine.

You tried to RUN a program that had aline with an already-marked
syntax error on it (i.e. it has the "ERRCR -" on it), Note: the SAVEing
of a line that contains a syntax error can be useful when debugging your

If the sexp in a VAL does not start with a number, this message number

The program you're trying to LOAD islarger than available memory.
This could happen if you have used LOMEM to change the address at
which the BASIC XE tables start, or if you're LOADing using a DOS

Error Screen Message and Further Description

10 Expression too Complex

break the calculation into two or more BASIC XFE statements.
11 Overflow/UnderFlow

large or too small.
12 Line Not Found

The target lineno of a GOTO, GOSUB, or IF/THEN does not exist.
13 NEXT without FOR

Note: Improper use of POP could cause this error.
14 Line Too Long or Complex

expression in multiple statements.
15 Line Not Found

CONT and the program tries to execute the RETURN or NEXT.
16 RETURN without GOSUB

Note: improper use of POP could also cause this error.
17 Bad Line

program, but don't forget to change it before RUNning again.
18 Not a Number

is generated. For example, VAL("ABC") would cause this error.
19 Too Big to LOAD

different from the one used when the program was SAVEd.
20 Invalid Channel #

If the device number given in an I/0 statement is greater than 7 or less
than 0, then this error is issued.

Page E-2

BASIC XE Reference Manual

Appendix E Error Situations

Numbers 21 - 40

This error results if you try to LOAD a file that was not created by

This error occurs if the entire format string in a
PRINT USING statement is longer than 255 characters. It also occurs if

The value of an aexp in a PRINT USING statement is greater than or

The format field in a PRINT USING statement and the corresponding
exp to be output using that format are not of the same data type

A string being retrieved by RGET has a different DIMensioned length

The record element being retrieved by RGET and the variable to which

The end of a control structure like ENDIF or ENDWHILE was

An illegal player/missile number. Players must be numbered from 0-3

You attempted to use a PMG statement before initializing P/M's via

When RENUMbering, the maximum line number (32767) was exceeded.

Error Screen Message and Further Description
21 File Not LOAD format
SAVE.
22 USING String Too Big
a single format field is longer than 59 characters.
23 USING Value Too Big
equal to 1E+50,
24 USING Type Mismatch
(arithmetic or string).
25 RGET DIM Mismatch
than the string variable to which it is to be assigned.
26 RGET Type Mismatch
it is assigned are not of the same data type.
28 Invalid Structure
encountered without a corresponding IF or WHILE.
29 P/M {# Out of Range
and missiles from 4-7.
30 P/M Graphics not Active
PMG. 1 or PMG. 2.
32 ENTER not TRAPped
End of ENTER. This is the error resulting from using a SET 9,1.
34 Can't NUM/RENUM
aexpl or aexp2 in a RENUM or NUM statement evaluated to zero.
35 Can't NUM/RENUM
40 String Type Mismatch

You attempted to use an svar as an savar, or visa versa.

BASIC XE Reference Manual Page E-2

Error Situations Appendix E
Numbers 65 - 147

You tried to LOAD an EXTENDed program or use the
EXTEND statement on a computer that doesn't have extended memory.

You used a command avialable only if you boot with the disk extensions.
See How to Boot BASIC XE in the introduction for a list of these

You are trying to read from a CIO channel that was OPENed for writing

The I/0 command you issued does not exist for the device. This can

You are trying to write to a CIO channel that was OPENed for reading

The device you tried to access did not respond within its allotted time.

You tried to access a position not valid in the current graphics mode.

Either the 1/0 operation you attempted didn't execute properly, or you

Error Screen Message and Further Description
65 EXTENDed Memory Not Available
100 Extensions not installed!
commands.
129 Channel Already OPEN
You are trying to OPEN a CIO channel that is already OPEN.
130 No Device Handler
CIO could not find the device you specified in its device table.
131 Write Only
only.
132 Bad Device Cmd
happen if your XIO command or OPEN mode is wrong.
133 Channel Not OPEN
You tried to use a CIO channel that you haven't yet OPENed.
135 Read Only
only.
136 End-Of-File
There is no more data in the file you are reading.
138 Device Timeout
139 Device NAK
The device does not acknowledge.
141 Screen Position
144 Device Done
tried to write to a write-protected disk.
145 Invalid GR Mode
You attempted to use a graphics mode that doesn't exist.
147 No Memory for GR Mode

You don't have enough room for the graphics mode you specified.

Page E-4

BASIC XE Reference Manual

Appendix E Error Situations

Numbers 160 - 171

DOS does not recognize the drive number you gave. This can happen if

DOS does not have any more buffers available on which to OPEN files.

You used an illegal disk file name. See your DOS manual for legal file

FError Screen Message and Further Description
160 Invalid Drive #
you specified an illegal drive number or if the drive is not on.
161 Too Many OPEN Files
162 Disk Full
There is no room for more data on the disk.
165 Bad File Name
names.
167 File PROTECTed
You tried to write to a PROTECTed file.
169 DIRectory Full
The disk directory is full, so you can't create any new files.
170 File Not Found
DOS can't find the file you specified on the disk.
171 Bad Point Value

You attempted to POINT to a non-existent place on the disk, or you did
not OPEN the file in update mode (12).

BASIC XE Reference Manual Page E-6§

Error Situations Appendix E
Space For Your Notes

Space For Your Notes

Page E-6 BASIC XE Reference Manual

Index

avar

Underlined page numbers refer to sections where the term is defined.

as bitwise OR 19-20, 21

in PRINT USING format 47, 49

with PROCEDURE parameters
7, 112-117

preceding I/0 channel 41-42
in PRINT USING format 47-49

after svar or savar 9, 12

in hexadecimal constant 23

in LVAR variable list 37

in PRINT USING format 47, 49

as bitwise EOR 19-20, 21
in PRINT USING format 47, 49

as bitwise AND 19-20, 21
in PRINT USING format 47-49

as multipiy operator 19, 21
in PRINT USING format 47-48
in filespec string 57

as plus operator 19-20, 21
in PRINT USING format 47-49

for string concatenation 17
spacing in 1/0 43
in PRINT USING format 47-49

as minus operator 19-20, 21

as unary minus 23

in PRINT USING format 47-50
. in PRINT USING format 47-49

as divide operator 19, 21
in PRINT USING format 47, 50

spacing in I/0 42

savar element 12

with SORTUP/SORTDOWN 96, 98
< less than operator 20,21
<= less or equal operator 20,21
<> not equal operator 20,21

in variable assignment 16-17
as equal operator 20,21
> greater than operator 20,21
>= greater or equal operator 20,21
? as filespec character 57
A exponentiation operator 19, 21

ABS - absolute value 17, 102
adata - ATASCII data 5

ADR - address of variable 70
with BPUT and BGET 51
with USR calls 118
and SET 15,aexp 36

Alphanumeric 5, 95

AND - logical AND operator 19-21

aop - arithmetic operator 5, 19

Arithmetic
Assignment 16
BCD Storage 23
Constant 24, 61, 63
Expressions 24
Floating Point 6, 23
Matrices 10-11
Operators 19-20
Variables 9

Arrays 5
Arithmetic 10
String 7, 12
DIMensioning 13
Assignment 16
with RGET 53
as PROCEDURE parameters

113-117
Sorting 95-98

ASC - ATASCII value 24, 69

Assignment to variables 16-17

ATASCI 5, 29, 69, 75, 95, 98

ATN - Arctangent 107, 108

Automatic DIMensioning 12, 13
see also SET

avar - Arithmetic variable 5,9
assignment 16
in expressions 24
as LOCAL variable 14, 111,

112-113, 116

BASIC XE Reference Manual

Page I-1

BCD
EXTENDed mode

Index

BCD

see Binary Coded Decimal
BGET 51

with ADR 70

with PMADR 89
Binary Coded Decimal 23, 52
Binary operators 5, 19-20, 21
Bitwise operators 19-20, 21

AND (&) 19-20

OR () 19-20
EOR (%) 19-20
BLOAD 54
BPUT 51
with ADR 70
with PMADR 89
Brackets 3

BREAK key 4

Trapping 35
BSAVE 2,54
BUMP 84, 88
BYE 39

CALL 2, 110-111, 117
in TRACE mode” 33
Channel for 1/0 5, 41-42
CHR$ 69
CLOAD 29, 30
CLOG - base 10 logarithm 103, 104
CLOSE -
an OPEN channel 43
done by LPRINT 45
CLR - clear all variables 35, 37
cname - CALLed name 5, 117
COLOR 79 -
registers 77
values 78
SETCOLOR relationship 79
when PLOTting 80
when filling 81
Concatenating Strings 17
Conditional
Expression 20
Statements 60, 63-64, 65
Constant
see String Constant
and Arithmetic Constant
CONT 31, 33 67-68
COS - cosine 107
CP 39
CSAVE 29, 30

DATA 99, 100
and SET 5,aexp 35
Data 1/0 47
Deferred Mode 4
DEG 107, 108
DEL 2, 25, 26, 32
Derived Trigonometric Functions 108
Device 5,41
Storing programs to 29-30
OPENing and CLOSEing 42-43
DIM 13
Arrays and Strings 10, 12, 13
autoDIM size 36
DIM size and RPUT/RGET 52-53
DIM within PROCEDURE 115
DIR 57
Direct Mode 4
Disk File 41
DOS
Disk Operating System 2, 41,
51, 55, 57, 58
command 39
DPEEK 101,102
DPOKE 101, 102
DRAWTO 80
setting the COLOR 79
with fill 81

ELSE 64

END 31, 93, 109, 115
ENDIF 64
ENDWHILE 60, 62
ENTER 29

to clear variable table 9
in FAST mode 32
SET S5,aexp 35
SET 9,aexp 36
ERASE 57,58
ERR 67, 68
Error Handling 33, 67-68
Error Message 35
Execute Mode 4
EXIT 2, 110-111, 116
and LOCAL 14-15
from a GOSUB 109
exp 5, 20
EXP - exponential 103, 104
Expression 5, 23-24
Arithmetic 24
String 24
EXTEND 4, 32, 35, 38
EXTENDed Mode 38, 51, 101

Page I-2

BASIC XE Reference Manual

Index

FAST
Numeric Constant

FAST 2, 31,32

filespec 6, 41-42

Fill with XIO 56, 81

Fill character
in PRINT USING 47-48

FIND 70

Floating Point 6, 22

FOR 26, 35-36,59
POP within FOR loop 62

FRE 35,37

Functions
Arithmetic 103, 104, 105
Game Controller 72, 74
P/M Graphics 88, 89
String 69, 70, 71, 72
Trigonometric 107, 108

GET 45, 56
Glossary 5-7
GOSUB 109
ON ... GOSUB 65
RENUMbering 27
in FAST mode 32
leaving with POP 62
with LOCAL 14-15
EXITing a GOSUB 116
GOTO 27, 31-3, 61, 68
ON ... GOTO 65
GRAPHICS 78, 85
Graphics 31, 41, 51, 75, 78
Mode 75-76, 79

Hexadecimal Constant 23, 36, 72
HEX$ 72 -
HITCLR 2, 88

HSTICK 74

IF 63-64

Indentation 26, 35, 36

INPUT 24, 35, 44, 52, 56
Custom Prompt 44
Default Prompt 35, 44
Reprompt 44

INT 103

Integers 6, 19, 101-102
hexadecimal integers 23

INVERSE 50

LEFT$ 71
LEN 16, 53,69, 71
LET 17 -
lineno 6,29
see also Line Number

Line Number 4, 6
LIST range 26, 29
RENUMbering 27
autoNUMber 25
and FAST 32
in TRACE mode 33
error line 68
with GOTO & GOSUB 61, 109
with IF ... THEN 63
with ON 65
with TRAP 67
with RESTORE 100
LIST 9, 25, 26, 27, 29, 32, 36
Literal Strin? -
see String Literal
LOAD 29,30, 32
LOCAL 2,9, 14
POPping LOCALs 62
with GOSUB 109
implicit LOCALs 111-112
and EXIT 116
LOCATE 80
LOG - natural logarithm 104
Logical Operator 6, 17-19, 20
LOMEM 35, 37
Loops 32, 35, 59, 60
lop 6, 20, 21, 24
LPRINT 42, 45, 50
LYAR 2, 32, 35, 37

Matrix Variable 6, 9-11
DIMensioning 13
assigning 16
as PROCEDURE parameter 97

MID$ 71

MISSILE 84-86, 87

Modes -
Graphics 78, 79
Operating 4
P/M Graphics 83

MOVE 2, 89, 102

mvar 6, 10, 24, 53, 112

NEW 9, 25
NEXT 53, 62
NORMAL 50
NOT 17, 20, 21
NOTE 55
NUM 4, 25
Numeric Constant
see Arithmetic Constant

BASIC XE Reference Manual

Page I-

ON
Statement

Index

ON 27, 65
OPEN 41, 42, 45, 56
status of OPENed channel 55
Operating Modes 4
Operators 5, 6, 19
Arithmetic” 19-20
Bitwise 19-20
Logical 20
Precedence 21
OR 19, 20, 21

PADDLE 73
PEEK 89, 101, 102
PEN 73
pexp 6, 112, 114, 115, 116
PLOT 79, 80, 81
P/M Graphics 83-85, 90
Conventions 84
Fifth Player 36
Modes 85
Wraparound 86, 88
PMADR 85,89
PMCLR 88
PMCOLOR 77, 86
PMGRAPHICS 85
PMMOVE 83-84, 86, 88
pmnum 7, 84, 89
PMWIDTH 86, 87
pname 7, 112
POINT 55
POKE 89, 101, 102
POP 62, 109, 116
POSITION 80
PRINT 35, 43, 45, 46, 50, 76
PRINT USING 36, 46, 47
PROCEDURE 2, 14, 170-115, 112
Program
Editing 25-27
Entry 25-27, 29, 35
Execution 31-33
Formatting 26, 35, 36
Line 4,7
1/0 29-30
PROTECT 57
PTRIG 73
PUT 45

RAD 107

RANDOM 104

READ 99-100

relational operators 20, 21, 24
REM 27 -
RENAME 58

RENUM 2, 27, 61

RESTORE 100

RETURN 15, 62, 65, 109, 110,
RGET 2, 44, 53 -
RIGHTS 71

RND 104

RPUT 2, 44,52

RUN 30, 31, 32

rvar 7, 112, 114, 117

savar 7, 12
DIMensioning 13
assigning 17
in expressions 24
sorting 95-98
as parameters 112-113, 116, 137
SAVE 25, 30, 32
SET -
table 35-36
0 -<BREAK> key trapping 35
1 -PRINT tabs 43
2 -INPUT prompt char 35
3 ~-FOR loops 59
4 -INPUT reprompting 44
5 -LIST format 26-27
6 -print error messages 35
7 -P/M wraparound 86, 88
8 ~-PHA of USR arguments 118
9 -ENTER trapping 29
10-5th player enable 36
11-autoDIM 12-13
12-indentation of LIST 36
13-VAL w/ hex constant 72
14-USING format overflow 47
15-ADR w/ literal string 70
SETCOLOR 76-77, 78, 79-80, 84
sexp 7, 16, 17, 23, 24
SGN 103
SIN 107
SORTDOWN 2, 95, 98
SORTUP 2, 95, 98
SOUND 93
SQR 103
Statement 7
Assignment 16-17
Conditional 63-65
DATA 99-100
Data I/0 41-46, 47-58
Disk File 57-58
Graphics 75-81
Loops 59-62
P/M Graphics 83-91
Program Editing 25-27

Page I-4

BASIC XE Reference Manual

Index Statement
XIO
Statement (contd.) TAB
Program Execution 31-33 statement 46
Program I/0 29-30 function 46
Sorting 95-98 tab stops 35, 43
Subroutine 109-118 THEN 63, 64
STATUS 55 TO
STEP 59 with FOR 59
STICK 73 with SORT 97, 98
STOP 33, 68 with CALL 111',_114-]16,m
STR$ 72 with EXIT 116
STRIG 74 TRACE 31, 33
String TRACEOFF 31, 33
Array see savar TRAP 31, 35-36, 44, 47, 67
Assignment 16-17
AutoDIMensioning 12, 13 UNPROTECT 57
AutoDIM Size 36 USING
Concatenation 17 with PRINT 47
Constant 23, 44 with CALL and PROC. 111-112,

Expressions 24
as filespec 42
Functions 69-72

as PROCEDURE name 110-112,

117
Substrings 16
Variables 12
svar 7,12
assigning 16-17
in expressions 24

as PROCEDURE parameters 112,

116-117
SYS 35, 36

117
with SORT 96, 98
USR 36, 70, 90, 118

VAL 36,72

var 7

Variables 7, 9
Arithmetic 9
LOCAL variables 14-15
Matrix 10-11
Maximum number 9
Names 9
String 12
Types of 9

VSTICK 74, 84, 86

WHILE 26, 36, 60, 62

XIO 55, 56, 81

BASIC XE Reference Manual

Page I-5

BASIC XE"
Just look at what you get for

one low sticker price:

BEST MILEAGE: With over 60,000 more bytes
for your programs, BASIC XE lets you use all the
memory you paid for.*

MORE HORSEPOWER: Run Atari BASIC pro-
grams 2 to 6 times faster.* Even with its incredible
power, BASIC XE is compatible with Atari BASIC.

CLASSIC DESIGN: Show off the sleek struc-
tured style of your own programs when you use
BASIC XE statements like PROCEDURE,
IF...ELSE, and WHILE... ENDWHILE.

FREE ACCESSORIES: Get over $100 worth of
Atari BASIC options FREE when you buy BASIC
XE: complete Player/Missile Graphics support,
string arrays, DOS access, SORT commands, read-
able listings...over 50 extras at no additional charge.

Revised by GoodByteXL

7

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160

